Tirapazamine (3-amino-1,2,4-benzotriazine-1,4-dioxide) is a promising hypoxia-selective cytotoxin that has shown significant activity in advanced clinical trials in combination with radiotherapy and cisplatin. The current study aimed to advance our understanding of tirapazamine-induced lesions and the pathways involved in their repair. We show that homologous recombination plays a critical role in repair of tirapazamine-induced damage because cells defective in homologous recombination proteins XRCC2, XRCC3, Rad51D, BRCA1, or BRCA2 are particularly sensitive to tirapazamine. Consistent with the involvement of homologous recombination repair, we observed extensive sister chromatid exchanges after treatment with tirapazamine. We also show that the nonhomologous end-joining pathway, which predominantly deals with frank double-strand breaks (DSB), is not involved in the repair of tirapazamine-induced DSBs. In addition, we show that tirapazamine preferentially kills mutants both with defects in XPF/ERCC1 (but not in other nucleotide excision repair factors) and with defects in base excision repair. Tirapazamine also induces DNA-protein cross-links, which include stable DNA-topoisomerase I cleavable complexes. We further show that gamma H2AX, an indicator of DNA DSBs, is induced preferentially in cells in the S phase of the cell cycle. These observations lead us to an overall model of tirapazamine damage in which DNA single-strand breaks, base damage, and DNA-protein cross-links (including topoisomerase I and II cleavable complexes) produce stalling and collapse of replication forks, the resolution of which results in DSB intermediates, requiring homologous recombination and XPF/ERCC1 for their repair.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-06-4497DOI Listing

Publication Analysis

Top Keywords

homologous recombination
20
repair
8
involved repair
8
repair tirapazamine-induced
8
excision repair
8
dna-protein cross-links
8
cleavable complexes
8
tirapazamine
7
homologous
5
recombination principal
4

Similar Publications

Bacteria encode various DNA repair pathways to maintain genome integrity. However, the high degree of homology between DNA repair proteins or their domains hampers accurate identification. Here, we describe a stringent search strategy to identify DNA repair proteins and provide a systematic analysis of taxonomic distribution and co-occurrence of DNA repair proteins involved in RecA-dependent homologous recombination.

View Article and Find Full Text PDF

Bacterial genomes primarily diversify via gain, loss, and rearrangement of genetic material in their flexible accessory genome. Yet the dynamics of accessory genome evolution are very poorly understood, in contrast to the core genome where diversification is readily described by mutations and homologous recombination. Here, we tackle this problem for the case of very closely related genomes.

View Article and Find Full Text PDF

Elucidating the expression and role of cGAS in pan-cancer using integrated bioinformatics and experimental approaches.

BMC Cancer

January 2025

Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.

cGAS plays an important role in regulating both tumor immune responses and DNA damage repair. Nevertheless, there was little research that comprehensively analyzed the correlation between cGAS and the tumor microenvironment, immune cell infiltration, and DNA damage repair in different cancers. In this study, The Cancer Genome Atlas (TCGA) and Cancer Cell Line Encyclopedia (CCLE) data were used to analyze the mRNA expression and genomic alterations of cGAS in pan-cancer.

View Article and Find Full Text PDF

C1QBP exhibits heightened expression across a spectrum of tumours, thereby fostering their proliferation and metastasis, rendering it a pivotal therapeutic target. Nevertheless, to date, no pharmacological agents capable of directly targeting and inducing the degradation of C1QBP have been identified. In this study, we have unveiled a new peptide, PDBAG1, derived from the precursor protein GPD1, employing a peptidomics-based drug screening strategy.

View Article and Find Full Text PDF

Tumor suppressor BRCA2 executes homologous recombination to repair DNA double-strand breaks in collaboration with RAD51, involving exon 11 and 27. Exon 11 constitutes a region where pathogenic variants (PVs) accumulate, and mutations in this region are known to contribute to carcinogenesis. However, the impact of the heterozygous PVs of BRCA2 exon 11 on the life quality beyond cancer risk, including male fertility, remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!