Background: Taste buds are the sensory organs of taste perception. Three types of taste cells have been described. Type I cells have voltage-gated outward currents, but lack voltage-gated inward currents. These cells have been presumed to play only a support role in the taste bud. Type II cells have voltage-gated Na+ and K+ current, and the receptors and transduction machinery for bitter, sweet, and umami taste stimuli. Type III cells have voltage-gated Na+, K+, and Ca2+ currents, and make prominent synapses with afferent nerve fibers. Na+ salt transduction in part involves amiloride-sensitive epithelial sodium channels (ENaCs). In rodents, these channels are located in taste cells of fungiform papillae on the anterior part of the tongue innervated by the chorda tympani nerve. However, the taste cell type that expresses ENaCs is not known. This study used whole cell recordings of single fungiform taste cells of transgenic mice expressing GFP in Type II taste cells to identify the taste cells responding to amiloride. We also used immunocytochemistry to further define and compare cell types in fungiform and circumvallate taste buds of these mice.
Results: Taste cell types were identified by their response to depolarizing voltage steps and their presence or absence of GFP fluorescence. TRPM5-GFP taste cells expressed large voltage-gated Na+ and K+ currents, but lacked voltage-gated Ca2+ currents, as expected from previous studies. Approximately half of the unlabeled cells had similar membrane properties, suggesting they comprise a separate population of Type II cells. The other half expressed voltage-gated outward currents only, typical of Type I cells. A single taste cell had voltage-gated Ca2+ current characteristic of Type III cells. Responses to amiloride occurred only in cells that lacked voltage-gated inward currents. Immunocytochemistry showed that fungiform taste buds have significantly fewer Type II cells expressing PLC signalling components, and significantly fewer Type III cells than circumvallate taste buds.
Conclusion: The principal finding is that amiloride-sensitive Na+ channels appear to be expressed in cells that lack voltage-gated inward currents, likely the Type I taste cells. These cells were previously assumed to provide only a support function in the taste bud.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2235881 | PMC |
http://dx.doi.org/10.1186/1471-2202-9-1 | DOI Listing |
Clin Transl Med
January 2025
Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, Indianapolis, Indiana, USA.
Free Radic Biol Med
December 2024
Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India. Electronic address:
Akhuni, an ethnic food of northeast India, induces ROS-mediated apoptosis in cancer cells. This is the first report on the anticancer potential of Akhuni. Akhuni is a traditional fermented soybean product known for its umami taste and delicacy, commonly used in Northeast India's cuisine.
View Article and Find Full Text PDFPol J Vet Sci
December 2024
Department of Animal Welfare and Research, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, Poland.
Poultry scientists are constantly studying different breeds of cockerels that would be suitable for capon meat production. Capon meat, although not yet very popular, is characterized by exceptional taste qualities that could appeal to many customers. Obtaining the appropriate palatability, structure and tenderness of capon meat is possible thanks to the reduction in androgen levels following the castration of roosters.
View Article and Find Full Text PDFGels
November 2024
Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50, Pervomaiskaya Str., 167982 Syktyvkar, Russia.
The study aims to develop a plant-based food gel with a unique texture using callus cells and a mixture of xanthan (X) and konjac (K) gums. The effect of encapsulation of carrot callus cells (0.1 and 0.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Immunology, Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
Background: Severe Acute Respiratory syndrome coronavirus 2 (SARS-CoV-2) and Influenza A viruses (IAVs) are among the most important causes of viral respiratory tract infections, causing similar symptoms. IAV and SARS-CoV-2 infections can provoke mild symptoms like fever, cough, sore throat, loss of taste or smell, or they may cause more severe consequences leading to pneumonia, acute respiratory distress syndrome or even death. While treatments for IAV and SARS-CoV-2 infection are available, IAV antivirals often target viral proteins facilitating the emergence of drug-resistant viral variants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!