Microbes are known to regulate both gene expression and protein activity through the use of post-translational modifications (PTMs). Common PTMs involved in cellular signaling and gene control include methylations, acetylations, and phosphorylations, whereas oxidations have been implicated as an indicator of stress. Shewanella oneidensis MR-1 is a Gram-negative bacterium that demonstrates both respiratory versatility and the ability to sense and adapt to diverse environmental conditions. The data set used in this study consisted of tandem mass spectra derived from midlog phase aerobic cultures of S. oneidensis either native or shocked with 1 mM chromate [Cr(VI)]. In this study, three algorithms (DBDigger, Sequest, and InsPecT) were evaluated for their ability to scrutinize shotgun proteomic data for evidence of PTMs. The use of conservative scoring filters for peptides or proteins versus creating a subdatabase first from a nonmodification search was evaluated with DBDigger. The use of higher-scoring filters for peptide identifications was found to result in optimal identifications of PTM peptides with a 2% false discovery rate (FDR) for the total data set using the DBDigger algorithm. However, the FDR climbs to unacceptably high levels when only PTM peptides are considered. Sequest was evaluated as a method for confirming PTM peptides putatively identified using DBDigger; however, there was a low identification rate ( approximately 25%) for the searched spectra. InsPecT was found to have a much lower, and thus more acceptable, FDR than DBDigger for PTM peptides. Comparisons between InsPecT and DBDigger were made with respect to both the FDR and PTM peptide identifications. As a demonstration of this approach, a number of S. oneidensis chemotaxis proteins as well as low-abundance signal transduction proteins were identified as being post-translationally modified in response to chromate challenge.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr070531nDOI Listing

Publication Analysis

Top Keywords

ptm peptides
16
post-translational modifications
8
shotgun proteomic
8
proteomic data
8
shewanella oneidensis
8
data set
8
peptide identifications
8
dbdigger
6
peptides
5
ptm
5

Similar Publications

Artificial Intelligence Transforming Post-Translational Modification Research.

Bioengineering (Basel)

December 2024

Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA.

Post-Translational Modifications (PTMs) are covalent changes to amino acids that occur after protein synthesis, including covalent modifications on side chains and peptide backbones. Many PTMs profoundly impact cellular and molecular functions and structures, and their significance extends to evolutionary studies as well. In light of these implications, we have explored how artificial intelligence (AI) can be utilized in researching PTMs.

View Article and Find Full Text PDF

A Protein Cleavage Platform Based on Selective Formylation at Cysteine Residues.

J Am Chem Soc

January 2025

Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.

Site-selective cleavage of the peptide backbone in proteins is an important class of post-translational modification (PTM) in nature. However, the organic chemistry for such site-selective peptide bond cleavages has yet to be fully explored. Herein, we report cysteine -formylation as a means of selective protein backbone cleavage.

View Article and Find Full Text PDF

The Role of Vimentin Peptide Citrullination in the Structure and Dynamics of HLA-DRB1 Rheumatoid Arthritis Risk-Associated Alleles.

Int J Mol Sci

December 2024

Department of Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil.

Citrullination, a post-translational modification (PTM), plays a critical role in rheumatoid arthritis (RA) by triggering immune responses to citrullinated self-antigens. Some HLA-DRB1 genes encode molecules with the shared epitope (QKRAA/QRRAA) sequence in the peptide-binding groove which preferentially presents citrulline-modified peptides, like vimentin, that intensifies the immune response in RA. In this study, we used computational approaches to evaluate intermolecular interactions between vimentin peptide-ligands (with/without PTM) and HLA-DRB1 alleles associated with a significantly increased risk for RA development.

View Article and Find Full Text PDF

Posttranslational modifications (PTMs) of proteins play critical roles in regulating many cellular events. Antibodies targeting site-specific PTMs are essential tools for detecting and enriching PTMs at sites of interest. However, fundamental difficulties in molecular recognition of both PTM and surrounding peptide sequence have hindered the efficient generation of highly sequence-specific anti-PTM antibodies.

View Article and Find Full Text PDF

Despite the widespread use of MS for hydrogen/deuterium exchange measurements, no systematic, large-scale study has been conducted to compare the observed exchange rates in protein-derived, unstructured peptides measured by MS to the predicted exchange rates calculated from NMR-derived values and how neighboring residues and post-translational modifications influence those exchange rates. In this study, we sought to test the accuracy of predicted values by performing hydrogen exchange measurements on whole cell digests to generate an unbiased dataset of 563 unique peptides derived from naturally-occurring protein sequences. A remarkable 97% of observed exchange rates of peptides are within two-fold of predicted values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!