Purpose: To study the time course of changes in the multifocal electroretinograms (mfERG) in monkeys with experimental ocular hypertension (OHT).
Methods: The mfERGs were recorded in 12 eyes out of 6 monkeys. Two baseline measurements were used to quantify the reproducibility, the inter-ocular and the inter-individual variability of the ERG signals. Thereafter, the trabeculum of one eye of each animal was laser-coagulated in one to three sessions to induce OHT. ERG measurements were repeated regularly in a period of 18 months and the changes in ERG waveforms were quantified.
Results: All animals displayed OHT (between 20 and 50 mmHg) in the laser-coagulated eyes. An ERG change was defined as the sum of differences during the first 90 ms between the laser-coagulated eye and the same eye before laser coagulation and between the laser-coagulated eye and the non-treated fellow eye. Three animals displayed significant changes for nearly all retinal areas and all stimulus conditions. The three remaining animals displayed significant changes only in one comparison, indicating very mild changes. The data indicate that a high stimulus contrast is more sensitive to detect changes, probably because of a better signal-to-noise ratio. Moreover, the comparisons with the fellow eye are more sensitive to detect changes than comparisons with the measurements before laser-coagulation.
Conclusions: OHT does not always lead to ERG changes. Comparisons with fellow eyes using high contrast stimuli are more sensitive to detect changes related to OHT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10633-007-9102-9 | DOI Listing |
Microb Biotechnol
January 2025
Department of Animal Biotechnology, Dankook University, Cheonan, Korea.
The coronavirus disease 2019 (COVID-19) is a fatal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To date, several vaccines have been developed to combat the spread of this virus. Mucosal vaccines using food-grade bacteria, such as Lactobacillus spp.
View Article and Find Full Text PDFNutrients
December 2024
Department of Nutrition, Texas A&M University, College Station, TX 77843, USA.
Background/objectives: This study builds on previous findings from mouse models, which showed that maternal overnutrition induced by a high-fat diet (HFD) promotes metabolic-associated fatty liver disease (MAFLD) in offspring, linked to global DNA hypermethylation. We explored whether epigenetic modulation with 5-Aza-CdR, a DNA methylation inhibitor, could prevent MAFLD in offspring exposed to maternal overnutrition.
Methods: The offspring mice from dams of maternal overnutrition were fed either a chow diet or a high-fat diet (HFD) for 10 weeks.
Int J Mol Sci
December 2024
Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
Growth hormone (GH) signaling is essential for heart development. Both GH deficiency and excess raise cardiovascular risk. Human (h) and mouse (m) GH differ structurally and functionally: hGH binds both the GH receptor (GHR) and prolactin receptor (PRLR), whereas mGH binds only GHR; thus, there is the potential for differential effects.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea.
The black soldier fly, , is a voracious scavenger of various organic materials; therefore, it could be exploited as a biological system for processing daily food waste. In order to survey novel hydrolytic enzymes, we constructed a fosmid metagenome library using unculturable intestinal microorganisms from . Through functional screening of the library on carboxymethyl cellulose plates, we identified a fosmid clone, the product of which displayed hydrolytic activity.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Animal Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA.
Zika virus (ZIKV) is a medically important mosquito-borne orthoflavivirus, but no vaccines are currently available to prevent ZIKV-associated disease. In this study, we compared three recombinant chimeric viruses developed as candidate vaccine prototypes (rJEV/ZIKV, rJEV/ZIKV, and rJEV/ZIKV), in which the two neutralizing antibody-inducing prM and E genes from each of three genetically distinct ZIKV strains were used to replace the corresponding genes of the clinically proven live-attenuated Japanese encephalitis virus vaccine SA-14-2 (rJEV). In WHO-certified Vero cells (a cell line suitable for vaccine production), rJEV/ZIKV exhibited the slowest viral growth, formed the smallest plaques, and displayed a unique protein expression profile with the highest ratio of prM to cleaved M when compared to the other two chimeric viruses, rJEV/ZIKV and rJEV/ZIKV, as well as their vector, rJEV.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!