AI Article Synopsis

  • The current anthrax vaccine only protects against toxins, not against spore germination or infection, requiring a lengthy injection schedule and yearly boosters.
  • Researchers explored six virulence factors from Bacillus anthracis to improve the vaccine's efficacy using a technology that promotes strong immune responses.
  • The study found that other anthrax antigens, like EA1 and SAP, can generate long-lasting immune responses, suggesting they could enhance future vaccine formulations.

Article Abstract

The current anthrax vaccine imparts protective immunity by generating a humoral immune response against a single antigen, the PA exotoxin subunit. While this response neutralizes the two anthrax exotoxins and protects the recipient from toxin-related mortality, the recipient is not protected from spore germination, infection, and/or bacteremia. Moreover, protective immunity against PA must be generated via a lengthy injection schedule and maintained by a yearly booster. In an effort to improve upon the current vaccine formulation, we screened six of seven known virulence factors encoded by Bacillus anthracis epigenetic elements pXO1 and pXO2 as well as the major surface proteins EA1 and SAP. Screening was carried out in conjunction with a plasmid-based technology known for its ability to generate type 1 and type 2 T-helper responses. Long-term high level antibody titers were generated against the products of eag (EA1), sap (SAP), and the capA capsule synthesis subunit in vivo. Further analysis of PA- and EA1-vaccinated mice demonstrated antigen-specific type 1 helper responses including IFN-gamma secretion and lysis of EA1- or PA-loaded macrophages; further, an EA1 T-cell epitope was identified. The results demonstrate that anthrax antigens other than PA might be suitable for the generation of durable immune responses against anthrax.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2007.11.072DOI Listing

Publication Analysis

Top Keywords

anthrax vaccine
8
type type
8
type t-helper
8
immune responses
8
protective immunity
8
ea1 sap
8
anthrax
5
type
5
plasmid-based vaccination
4
vaccination candidate
4

Similar Publications

The COVID-19 and mpox crisis has reminded the world of the potentially catastrophic consequences of biological agents. Aside from the natural risk, biological agents can also be weaponized or used for bioterrorism. Dissemination in a population or among livestock could be used to destabilize a nation by creating a climate of terror, by negatively impacting the economy and undermining institutions.

View Article and Find Full Text PDF

Bacillus cereus biovar anthracis (Bcbva) causes anthrax-like disease in animals, particularly in the non-human primates and great apes of West and Central Africa. Genomic analyses revealed Bcbva as a member of the B. cereus species that carries two plasmids, pBCXO1 and pBCXO2, which have high sequence homology to the B.

View Article and Find Full Text PDF

Are we ready for the next anthrax outbreak? Lessons from a simulation exercise in a rural-based district in Uganda.

Epidemiol Infect

December 2024

Department of Wildlife, Animal Resources Management, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda.

Anthrax is a bacterial zoonotic disease caused by We qualitatively examined facilitators and barriers to responding to a potential anthrax outbreak using the capability, opportunity, motivation behaviour model (COM-B model) in the high-risk rural district of Namisindwa, in Eastern Uganda. We chose the COM-B model because it provides a systematic approach for selecting evidence-based techniques and approaches for promoting the behavioural prompt response to anthrax outbreaks. Unpacking these facilitators and barriers enables the leaders and community members to understand existing resources and gaps so that they can leverage them for future anthrax outbreaks.

View Article and Find Full Text PDF

We present the results of the whole-genome sequencing of a strain isolated from a permafrost sample collected in Yakutia, Russia. This strain was named YakM12. Phylogenetic analysis showed that YakM12 belongs to the canSNP group A.

View Article and Find Full Text PDF

Bacillus anthracis, a gram-positive bacillus capable of forming spores, causes anthrax in mammals, including humans, and is recognized as a potential biological weapon agent. The diagnosis of anthrax is challenging due to variable symptoms resulting from exposure and infection severity. Despite the availability of a licensed vaccines, their limited long-term efficacy underscores the inadequacy of current human anthrax vaccines, highlighting the urgent need for next-generation alternatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!