Embryotoxic effects of Carbaryl (CB), a widely used carbamate insecticide, was evaluated by modified Frog Embryo Teratogenesis Assay-Xenopus (FETAX), coupled with a histopathological screening of the survived larvae. X. laevis embryos were exposed to 1, 2, 4, 8, 16 and 24 mg/L CB from stage 8 to stage 47. From an estimated LC50 of 20.28 mg/L and TC50 of 8.43 mg/L a TI of 2.41 was derived, indicating that CB is to be considered teratogenic for X. laevis embryos. The most characteristic terata, classified as abnormal tail flexure, involved a significant percentage of larvae from 1 mg/L CB onward, reaching 100% at 24 mg/L CB. Histopathological screening revealed tail musculature and notochord as the main targets for CB. Skeletal muscle lesions consisted of myotomes reduced in size, showing myocytes with disorganized contractile systems and irregular myosepta, coupled with disarranged myocyte apexes. Notochords from CB exposed larvae appeared wavy or bent, with irregular connective sheaths and histologically characterized by protrusions of fibrous matrix and inclusions of ectopic cell masses. This axial-skeletal damage was hypothesized to be related both to the inhibition of acetylcholinesterase, with consequent muscular tetanic spasms, and to disorders in the organization of the connective tissue matrix surrounding the notochord.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2007.11.031DOI Listing

Publication Analysis

Top Keywords

laevis embryos
12
histopathological screening
8
mg/l
5
axial-skeletal defects
4
defects caused
4
caused carbaryl
4
carbaryl xenopus
4
xenopus laevis
4
embryos embryotoxic
4
embryotoxic effects
4

Similar Publications

Embryotoxicity of statins and other prescribed drugs with reported off-target effects on cholesterol biosynthesis.

Reprod Toxicol

December 2024

Department of Biological Sciences, Alabama State University, Montgomery, AL, United States; Center For NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States. Electronic address:

Cholesterol plays pivotal cellular functions ranging from maintaining membrane fluidity to regulating cell-cell signaling. High cholesterol causes cardiovascular diseases, low cholesterol is linked to neuropsychiatric disorders, and inborn errors of cholesterol synthesis cause multisystem malformation syndromes. Statins lower cholesterol levels by inhibiting the first, rate-limiting reaction of the cholesterol biosynthesis pathway catalyzed by hydroxymethyl-glutaryl-Coenzyme A reductase (HMGCR).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the unique molecular environment of living cells by analyzing the diffusion of various proteins in cytoplasmic extracts from eggs using a technique called single-molecule displacement/diffusivity mapping (SMM).
  • It was found that negatively charged proteins diffused about 50% slower, while positively charged proteins showed a much greater reduction in diffusion by 80-90%, suggesting strong electrostatic interactions in the predominantly negatively charged cytoplasm.
  • The research also identified that the presence of RNA and cytoskeletal components, like actin, significantly affects protein diffusion and viscosity, indicating the complex interactions at play within the crowded cellular environment.
View Article and Find Full Text PDF

Beta-catenin is essential for diverse biological processes, such as body axis determination and cell differentiation, during metazoan embryonic development. Beta-catenin is thought to exert such functions through complexes formed with various proteins. Although β-catenin complex proteins have been identified in several bilaterians, little is known about the structural and functional properties of β-catenin complexes in early metazoan evolution.

View Article and Find Full Text PDF

Cyclin-dependent kinase 1 (Cdk1) activity rises and falls throughout the cell cycle: a cell-autonomous process called mitotic oscillations. Mitotic oscillators can synchronize when spatially coupled, facilitating rapid, synchronous divisions in large early embryos of Drosophila (~0.5 mm) and Xenopus (~1.

View Article and Find Full Text PDF

The bipolar shape of the microtubule-based spindle is a pivotal morphological phenotype for accurate chromosome segregation during cell division. However, existing descriptions of spindle morphogenesis remain largely qualitative. Here, we introduce a method that provides a quantitative description of the morphological growth dynamics of spindles using Xenopus egg cytoplasmic extract and a computational image analysis pipeline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!