There is increasing evidence that modified phospholipid products of low density lipoprotein (LDL) oxidation mediate inflammatory processes within vulnerable atherosclerotic lesions. Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) is present in vulnerable plaque regions where it acts on phospholipid oxidation products to generate the pro-inflammatory lysophsopholipids and oxidized non-esterified fatty acids. This association together with identification of circulating Lp-PLA(2) levels as an independent predictor of cardiovascular disease provides a rationale for development of Lp-PLA(2) inhibitors as therapy for atherosclerosis. Here we report a systematic analysis of the effects of in vitro oxidation in the absence and presence of an Lp-PLA(2) inhibitor on the phosphatidylcholine (PC) composition of human LDL. Mass spectrometry identifies three classes of PC whose concentration is significantly enhanced during LDL oxidation. Of these, a series of molecules, represented by peaks in the m/z range 594-666 and identified as truncated PC oxidation products by accurate mass measurements using an LTQ Orbitrap mass spectrometer, are the predominant substrates for Lp-PLA(2). A second series of oxidation products, represented by peaks in the m/z range 746-830 and identified by LTQ Orbitrap analysis as non-truncated oxidized PCs, are quantitatively more abundant but are less efficient Lp-PLA(2) substrates. The major PC products of Lp-PLA(2), saturated and mono-unsaturated lyso-PC, constitute the third class. Mass spectrometric analysis confirms the presence of many of these PCs within human atherosclerotic lesions, suggesting that they could potentially be used as in vivo markers of atherosclerotic disease progression and response to Lp-PLA(2) inhibitor therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M709970200DOI Listing

Publication Analysis

Top Keywords

oxidation products
12
mass spectrometry
8
spectrometry identifies
8
lipoprotein-associated phospholipase
8
low density
8
density lipoprotein
8
ldl oxidation
8
atherosclerotic lesions
8
lp-pla2
8
lp-pla2 inhibitor
8

Similar Publications

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

Mitochondrial Dysfunction in HFpEF: Potential Interventions Through Exercise.

J Cardiovasc Transl Res

January 2025

Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.

HFpEF is a prevalent and complex type of heart failure. The concurrent presence of conditions such as obesity, hypertension, hyperglycemia, and hyperlipidemia significantly increase the risk of developing HFpEF. Mitochondria, often referred to as the powerhouses of the cell, are crucial in maintaining cellular functions, including ATP production, intracellular Ca regulation, reactive oxygen species generation and clearance, and the regulation of apoptosis.

View Article and Find Full Text PDF

Effects of different water and fertilizer treatments on the matrix properties and plant growth of tailings waste.

Sci Rep

January 2025

Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China.

Vegetation ecological restoration technology is widely regarded as an environmentally sustainable and green technology for the remediation of mineral waste. The appropriate ratio of amendments can improve the substrate environment for plant growth and increase the efficiency of ecological restoration. Herbs and shrubs are preferred for vegetation restoration in abandoned mines because of their rapid establishment and easy management.

View Article and Find Full Text PDF

Evaluation of transcriptomic changes after photobiomodulation in spinal cord injury.

Sci Rep

January 2025

Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Spinal cord injury (SCI) is a significant cause of lifelong disability, with no available disease-modifying treatments to promote neuroprotection and axon regeneration after injury. Photobiomodulation (PBM) is a promising therapy which has proven effective at restoring lost function after SCI in pre-clinical models. However, the precise mechanism of action is yet to be determined.

View Article and Find Full Text PDF

Carbon-supported Fe single atom nanozymes with long-lasting ROS generation and high NIR photothermal performance for synergistic cancer therapy.

J Colloid Interface Sci

April 2025

High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:

Synergistic therapy combining photothermal therapy (PTT) and chemodynamic therapy (CDT) has proven to be a highly effective strategy for cancer treatment. However, PTT heavily relies on the accumulation of therapeutic agents at the tumor site. The peroxidase (POD) activity of common catalysts can be rapidly exhausted during the accumulation process, prior to laser intervention, thereby diminishing the synergistic enhancement effect of the combined therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!