Dialysis related amyloidosis (DRA) is a progressive and serious complication in patients under long-term hemodialysis and mainly leads to osteo-articular diseases. Although beta(2)-microglobulin (beta2-m) is the major structural component of beta2-m amyloid fibrils, the initiation of amyloid formation is not clearly understood. Here, we have identified procollagen C-proteinase enhancer-1 (PCPE-1) as a new interacting protein with beta2-m by screening a human synovium cDNA library. The interaction of beta2-m with full-length PCPE-1 was confirmed by immunoprecipitation, solid-phase binding and pull-down assays. By yeast two-hybrid analysis and pull-down assay, beta2-m appeared to interact with PCPE-1 via the NTR (netrin-like) domain and not via the CUB (C1r/C1s, Uegf and BMP-1) domain region. In synovial tissues derived from hemodialysis patients with DRA, beta2-m co-localized and formed a complex with PCPE-1. beta2-m did not alter the basal activity of bone morphogenetic protein-1/procollagen C-proteinase (BMP-1/PCP) nor BMP-1/PCP activity enhanced by PCPE-1. PCPE-1 did not stimulate beta2-m amyloid fibril formation from monomeric beta2-m in vitro under acidic and neutral conditions as revealed by thioflavin T fluorescence spectroscopy and electron microscopy. Since PCPE-1 is abundantly expressed in connective tissues rich in type I collagen, it may be involved in the initial accumulation of beta2-m in selected tissues such as tendon, synovium and bone. Furthermore, since such preferential deposition of beta2-m may be linked to subsequent beta2-m amyloid fibril formation, the disruption of the interaction between beta2-m and PCPE-1 may prevent beta2-m amyloid fibril formation and therefore PCPE-1 could be a new target for the treatment of DRA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.matbio.2007.11.005DOI Listing

Publication Analysis

Top Keywords

beta2-m amyloid
20
beta2-m
16
amyloid fibril
16
fibril formation
16
pcpe-1
10
procollagen c-proteinase
8
c-proteinase enhancer-1
8
enhancer-1 pcpe-1
8
beta2-microglobulin beta2-m
8
connective tissues
8

Similar Publications

The protein β2-microglobulin (β2-m) can aggregate in insoluble amyloid fibrils, which deposit in the skeletal muscle system of patients undergoing long-term haemodialysis. The molecular mechanisms of such amyloidogenesis are still not fully understood. A potential, although debated, triggering factor is the cis to trans isomerization of a specific proline (Pro32) in β2-m.

View Article and Find Full Text PDF

β2-microglobulin-related (Aβ2M) amyloidosis (dialysis-associated amyloidosis) is a common complication in long-term dialysis patients. An increased concentration of β2-microgloblin (β2-m) in the serum appears to be a prerequisite for Aβ2M amyloidosis, in turn causing Aβ2M amyloid deposition predominantly in the osteoarticular tissue. There are few reports, however, of Aβ2M amyloid deposition in non-dialysis patients.

View Article and Find Full Text PDF

C-reactive protein (CRP) and serum amyloid P component (SAP), two major classical pentraxins in humans, are soluble pattern recognition molecules that regulate the innate immune system, but their chaperone activities remain poorly understood. Here, we examined their effects on the amyloid fibril formation from Alzheimer's amyloid β (Aβ) (1-40) and on that from D76N β2-microglobulin (β2-m) which is related to hereditary systemic amyloidosis. CRP and SAP dose-dependently and substoichiometrically inhibited both Aβ(1-40) and D76N β2-m fibril formation in a Ca(2+)-independent manner.

View Article and Find Full Text PDF

Dialysis-related amyloidosis is a major complication in long-term hemodialysis patients. In dialysis-related amyloidosis, β2-microglobulin (β2-m) amyloid fibrils deposit in the osteoarticular tissue, leading to carpal tunnel syndrome and destructive arthropathy with cystic bone lesions, but the mechanism by which these amyloid fibrils destruct bone and joint tissue is not fully understood. In this study, we assessed the cytotoxic effect of β2-m amyloid fibrils on the cultured rabbit synovial fibroblasts.

View Article and Find Full Text PDF

Atomic force microscopy of ex vivo amyloid fibrils.

Methods Mol Biol

October 2011

Nanophysics Unit, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy.

Here, we report a study of ex vivo amyloid fibrils formed, respectively, by the Leu174Ser Apolipoprotein A-I (ApoA-I-LS) variant and by β2-microglobulin (β2-m) (Relini et al., J. Biol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!