Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Contact heat evoked potentials (CHEPs) provide an objective approach to investigate cerebral responses to thermal stimuli mediated by Adelta fibers. Skin denervation is often associated with reduced thermal sensibilities. We aimed to investigate the influences of skin denervation on CHEPs in neuropathic patients.
Methods: CHEPs were recorded at the vertex area by applying contact heat stimuli of 51 degrees C on the distal leg of neuropathic patients with sensory symptoms and pathological evidence of skin denervation in the distal leg. Patterns and parameters of CHEPs in the neuropathic group were compared with those in the control group of age- and gender-matched subjects.
Results: There were 25 neuropathic patients with reduced intraepidermal fiber (IENF) density (1.46+/-1.70fibers/mm, range: 0-5.32). In the control group, well-defined averaged tracings of CHEPs with an initial negative peak (N-wave) followed by a positive peak (P-wave) were consistently recorded in all 25 subjects. The peripheral conduction velocities of CHEPs were 9.92+/-4.06m/s (range: 6.06-16.60), in the range of Adelta fibers. The group of neuropathic patients had markedly reduced N-P amplitudes (p<0.0001) and prolonged N-wave latencies (p=0.049) compared to the control group. IENF density was the only neuropathic parameter correlated with N-P amplitude on multiple linear regression analysis (p=0.010) compared to large-fiber parameters.
Conclusions: In neuropathic patients with pathological evidence of skin denervation, there were reduced amplitude and prolonged latencies in CHEPs mediated by Adelta fibers. The reduction of CHEP amplitude corresponded to the degree of skin denervation.
Significance: CHEP offers electrophysiological evidence of thermal responses and provides an objective, non-invasive approach to assess the physiological counterparts of skin denervation in neuropathic patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinph.2007.11.043 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!