The functional implications of Akt activity and TGF-beta signaling in tamoxifen-resistant breast cancer.

Biochim Biophys Acta

Division of Medical Oncology, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea.

Published: March 2008

AI Article Synopsis

  • Acquired resistance to tamoxifen in estrogen receptor-positive breast cancer is a significant challenge, with a connection to TGF-beta and activated Akt signaling.
  • Tamoxifen-resistant cells (Tam-R) show decreased TGF-beta1 secretion and response, along with increased phosphorylated Akt levels compared to non-resistant MCF-7 cells.
  • Activating Akt leads to tamoxifen resistance by inhibiting TGF-beta signaling, while blocking Akt enhances TGF-beta activation and limits cell growth in resistant cells.

Article Abstract

Development of acquired resistance to tamoxifen is a major clinical problem during endocrine treatment in estrogen receptor positive breast cancer. Transforming growth factor-beta1 (TGF-beta) has been implicated in tamoxifen-induced cellular signaling in breast cancer, and increased Akt activation is associated with tamoxifen-resistant cell types. We hypothesized that the relationship between TGF-beta and Akt signaling may be involved in the development and progression of tamoxifen resistance. Tamoxifen-resistant (Tam-R) cells were established from parental MCF-7 cells by continuously exposing them to 4-hydroxytamoxifen (4-OHT). Tam-R cells were associated with a decrease in TGF-beta1 secretion, TGF-beta-mediated transcriptional response, and growth inhibitory effects of 4-OHT. Tam-R cells expressed significantly higher levels of phosphorylated Akt and lower levels of phosphorylated Smad 3 in both the absence and presence of 4-OHT when compared to MCF-7 cells treated with 4-OHT. Ectopic expression of constitutively active Akt (Myc-Akt(Myr)) rendered MCF-7 cells resistant to activation by TGF-beta and the growth inhibitory effects of 4-OHT, while over-expression of kinase-dead Akt (Myc-Akt(K179M)) or LY294002 treatment of Tam-R cells enhanced TGF-beta activation and blocked cell growth. These results suggest that suppression of TGF-beta signaling by activated Akt is correlated with the development of tamoxifen resistance in breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2007.12.001DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
tam-r cells
16
mcf-7 cells
12
tgf-beta signaling
8
tamoxifen resistance
8
4-oht tam-r
8
growth inhibitory
8
inhibitory effects
8
effects 4-oht
8
levels phosphorylated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!