Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Contractile dysfunction and cardiomyopathies secondary to apoptotic cell death are limiting factors for treating cancer with doxorubicin. Inhibition of volume-sensitive chloride currents (I(Cl,vol)) has been reported to blunt doxorubicin-induced apoptosis in cardiomyocytes. To investigate cellular contractility during acute induction of apoptosis by doxorubicin and to determine whether I(Cl,vol) inhibitors are able to prevent the subsequent contractile dysfunction, electrically paced ventricular myocytes freshly isolated from adult rabbits were acutely exposed to doxorubicin in the presence and absence of I(Cl,vol) inhibitors IAA-94 or DIDS. Doxorubicin induced increases in both annexin V labelling and caspase-3 activity and decreases in cell volume. Alteration in cardiac contractility was observed after doxorubicin exposure. Both IAA-94 and DIDS abolished the doxorubicin-induced decreases in peak shortening and cell volume as well as the increases in caspase-3 activity and annexin V labelling. These protective effects of I(Cl,vol) inhibitors were abolished by previous inhibition of PI(3)kinase, Akt and Erk 1/2. Thus, I(Cl,vol) inhibitors prevent doxorubicin-induced apoptosis and subsequent contractile dysfunction through PI(3)kinase/Akt and Erk 1/2. Inhibition of I(Cl,vol) may represent a new pharmacological strategy for developing cytoprotective drugs against apoptotic cell death and contractile dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejheart.2007.11.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!