A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The volume-sensitive chloride channel inhibitors prevent both contractile dysfunction and apoptosis induced by doxorubicin through PI3kinase, Akt and Erk 1/2. | LitMetric

AI Article Synopsis

  • Doxorubicin, a chemotherapy drug, leads to heart muscle damage through apoptotic cell death, causing contractile dysfunction in cardiomyocytes.
  • Inhibition of volume-sensitive chloride currents (I(Cl,vol)) using compounds like IAA-94 and DIDS can mitigate the harmful effects of doxorubicin, preserving cell volume, contractility, and reducing apoptosis markers.
  • The protective effects of I(Cl,vol) inhibitors rely on the activation of certain signaling pathways (PI(3)kinase, Akt, and Erk 1/2), suggesting a potential new approach for developing drugs to protect heart cells during cancer treatment.

Article Abstract

Contractile dysfunction and cardiomyopathies secondary to apoptotic cell death are limiting factors for treating cancer with doxorubicin. Inhibition of volume-sensitive chloride currents (I(Cl,vol)) has been reported to blunt doxorubicin-induced apoptosis in cardiomyocytes. To investigate cellular contractility during acute induction of apoptosis by doxorubicin and to determine whether I(Cl,vol) inhibitors are able to prevent the subsequent contractile dysfunction, electrically paced ventricular myocytes freshly isolated from adult rabbits were acutely exposed to doxorubicin in the presence and absence of I(Cl,vol) inhibitors IAA-94 or DIDS. Doxorubicin induced increases in both annexin V labelling and caspase-3 activity and decreases in cell volume. Alteration in cardiac contractility was observed after doxorubicin exposure. Both IAA-94 and DIDS abolished the doxorubicin-induced decreases in peak shortening and cell volume as well as the increases in caspase-3 activity and annexin V labelling. These protective effects of I(Cl,vol) inhibitors were abolished by previous inhibition of PI(3)kinase, Akt and Erk 1/2. Thus, I(Cl,vol) inhibitors prevent doxorubicin-induced apoptosis and subsequent contractile dysfunction through PI(3)kinase/Akt and Erk 1/2. Inhibition of I(Cl,vol) may represent a new pharmacological strategy for developing cytoprotective drugs against apoptotic cell death and contractile dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejheart.2007.11.002DOI Listing

Publication Analysis

Top Keywords

contractile dysfunction
20
iclvol inhibitors
16
inhibitors prevent
12
erk 1/2
12
volume-sensitive chloride
8
pi3kinase akt
8
akt erk
8
apoptotic cell
8
cell death
8
doxorubicin-induced apoptosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!