The mechanism by which sphingosine-1-phosphate receptor-1 (S1P1) acts to promote lymphocyte egress from lymphoid organs is not defined. Here, we showed that CCR7-deficient T cells left lymph nodes more rapidly than wild-type cells did, whereas CCR7-overexpressing cells were retained for longer. After treatment with FTY720, an agonist that causes downmodulation of lymphocyte S1P1, CCR7-deficient T cells were less effectively retained than wild-type T cells. Moreover, treatment with pertussis toxin to inactivate signaling via G alpha i-protein-coupled receptors restored egress competence to S1P1-deficient lymphocytes. We also found that T cell accumulation in lymph node cortical sinusoids required intrinsic S1P1 expression and was antagonized by CCR7. These findings suggest a model where S1P1 acts in the lymphocyte to promote lymph node egress by overcoming retention signals mediated by CCR7 and additional G alpha i-coupled receptors. Furthermore, by simultaneously upregulating S1P1 and downregulating CCR7, T cells that have divided multiple times switch to a state favoring egress over retention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2691390 | PMC |
http://dx.doi.org/10.1016/j.immuni.2007.11.017 | DOI Listing |
Sci Signal
June 2024
Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA 92093, USA.
A long-standing question in the field of signal transduction is how distinct signaling pathways interact with each other to control cell behavior. Growth factor receptors and G protein-coupled receptors (GPCRs) are the two major signaling hubs in eukaryotes. Given that the mechanisms by which they signal independently have been extensively characterized, we investigated how they may cross-talk with each other.
View Article and Find Full Text PDFUnlabelled: enzymes cleave producing IP3 and DAG. modulates the function of many ion channels, while IP3 and DAG regulate intracellular Ca levels and protein phosphorylation by protein kinase C, respectively. enzymes are under the control of GPCR signaling through direct interactions with G proteins and and have been shown to be coincidence detectors for dual stimulation of and G coupled receptors.
View Article and Find Full Text PDFFront Pharmacol
August 2023
Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.
The cannabinoid receptor (CBR) subtypes 1 (CBR) and 2 (CBR) are key components of the endocannabinoid system (ECS), playing a central role in the control of peripheral pain, inflammation and the immune response, with further roles in the endocrine regulation of food intake and energy balance. So far, few medicines targeting these receptors have reached the clinic, suggesting that a better understanding of the receptor signalling properties of existing tool compounds and clinical candidates may open the door to the development of more effective and safer treatments. Both CBR and CBR are Gα protein-coupled receptors but detecting Gα protein signalling activity reliably and reproducibly is challenging.
View Article and Find Full Text PDFInt J Mol Sci
July 2023
Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia.
Abnormal depolarization of neuronal membranes called paroxysmal depolarization shift (PDS) represents a cellular correlate of interictal spikes. The mechanisms underlying the generation of PDSs or PDS clusters remain obscure. This study aimed to investigate the role of ionotropic glutamate receptors (iGluRs) in the generation of PDS and dependence of the PDS pattern on neuronal membrane potential.
View Article and Find Full Text PDFCells
June 2023
Department and Institute of Pharmacology, National Defense Medical Center, Nei-hu, Taipei 114201, Taiwan.
Nuclear protein prothymosin α (ProTα) is a unique member of damage-associated molecular patterns (DAMPs)/alarmins. ProTα prevents neuronal necrosis by causing a cell death mode switch in serum-starving or ischemic/reperfusion models in vitro and in vivo. Underlying receptor mechanisms include Toll-like receptor 4 (TLR4) and G-coupled receptor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!