Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Our purpose is to evaluate intramucosal gastric pH video imaging by 2('),7(')-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF) fluorescence ratio techniques. We use a video endoscopic imaging system and BCECF as the pH fluorescent probe. Systemic in vivo pH variations are studied in 10 pigs: five in the control group and five with respiratory acidosis induced through rebreathing. The intramucosal pH of the gastric wall is measured every 5 s and the results demonstrate a good correlation (pearson correlation=0.832) between blood gases pH measurements and pH measured with the video endocopic imaging system. Our results confirm the feasibility of using BCECF fluorescence pH imaging to measure intramucosal pH in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1117/1.2821698 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!