Low-energy electron attachment to SF6. I. Kinetic modeling of nondissociative attachment.

J Chem Phys

Institut für Physikalische Chemie, Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany.

Published: December 2007

Low-energy electron-molecule collisions are analyzed by kinetic modeling within the framework of statistical unimolecular rate theory. Nondissociative electron attachment to SF(6) is used to illustrate the approach. An internally consistent representation is provided for attachment cross sections and rate coefficients in relation to detachment lifetimes, and both thermal and specific rate coefficients for detachment. By inspecting experimental data, the contributions of intramolecular vibrational redistribution and vibrationally inelastic collisions can be characterized quantitatively. This allows for a prediction of attachment rate coefficients as a function of electron and gas temperature as well as gas pressure over wide ranges of conditions. The importance of carefully controlling all experimental parameters, including the carrier gas pressure, is illustrated. The kinetic modeling in Part II of this series is extended to dissociative electron attachment to SF(6).

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2804761DOI Listing

Publication Analysis

Top Keywords

electron attachment
12
attachment sf6
12
kinetic modeling
12
rate coefficients
12
gas pressure
8
attachment
6
low-energy electron
4
sf6 kinetic
4
modeling nondissociative
4
nondissociative attachment
4

Similar Publications

This report investigates the preparation, characterization, and application of activated carbon derived from Spathodea campanulata flowers (SCAC) to remove Congo Red (CR) dye from aqueous streams. SCAC was synthesized using orthophosphoric acid activation which yielded a mesoporous material with a specific surface area of (986.41 m/g), significantly exceeding values reported for flower-derived activated carbons in the available literature.

View Article and Find Full Text PDF

Halorhodospira (Hlr.) halophila strain BN9622 is an extremely halophilic and alkaliphilic purple phototrophic bacterium and has been widely used as a model for exploring the osmoadaptive and photosynthetic strategies employed by phototrophic extreme halophiles that enable them to thrive in hypersaline environments. Here we present the cryo-EM structures of (1) a unique native Hlr.

View Article and Find Full Text PDF

The Properties of Damaged Starch Granules: The Relationship Between Granule Structure and Water-Starch Polymer Interactions.

Foods

December 2024

Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Universidad Nacional de Córdoba, Av. Filloy S/N, Ciudad Universitaria, Córdoba CP 5000, Argentina.

The morphology of wheat starch granules with different damaged starch (DS) content was analyzed using a particle size analyzer and scanning electron microscopy (SEM); the granular structure was studied using FT-IR spectroscopy and X-ray diffraction (XRD); and the granule-water interaction was evaluated by thermogravimetric analysis (TGA) and dynamic vapor sorption (DVS). The increase in the level of DS shifted the population of B-type granules towards larger particle diameters and shifted the population of A-type granules towards smaller particle diameters. The appearance of the surface of the starch-damaged granules was rough and flaky (SEM images).

View Article and Find Full Text PDF

Graphene Supported NiFe-LDH and PbO Catalysts Prepared by Plasma Process for Oxygen Evolution Reaction.

Materials (Basel)

December 2024

State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China.

The development of efficient catalysts for water electrolysis is crucial for advancing the low-carbon transition and addressing the energy crisis. This work involves the fabrication of graphene-based catalysts for the oxygen evolution reaction (OER) by integrating NiFe-LDH and PbO onto graphene using plasma treatment. The plasma process takes only 30 min.

View Article and Find Full Text PDF

Coumarin compounds have heterocyclic core with different properties such as high quantum yields, broad Stokes shifts, and superior photophysical and biological activity. It is known that fluorescence properties increase with increased intramolecular charge transfer in systems where electron-withdrawing or donor groups are attached to different positions of the coumarin compound. When these compounds interact with analytes in the environment, the analytes in the environment can be detected by quenching or increasing fluorescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!