The complex [Ni(PCy2NBz2)2](BF4)2, 1, reacts rapidly and reversibly with carbon monoxide (1 atm) at 25 degrees C to form [Ni(CO)(PCy2NBz2)2](BF4)2, 2, which has been characterized by spectroscopic data and by an X-ray diffraction study. In contrast, analogous Ni(II) carbonyl adducts were not observed in studies of several other related nickel(II) diphosphine complexes. The unusual reactivity of 1 is attributed to a complex interplay of electronic and structural factors, with an important contribution being the ability of two positioned amines in the second coordination sphere to act in concert to stabilize the CO adduct. The proposed interaction is supported by X-ray diffraction data for 2 which shows that all of the chelate rings of the cyclic ligands are in boat conformations, placing two pendant amines close (3.30 and 3.38 A) to the carbonyl carbon. Similar close C-N interactions are observed in the crystal structure of the more sterically demanding isocyanide adduct, [Ni(CNCy)(PCy2NBz2)2]2(BF4)2, 4. The data suggest a weak electrostatic interaction between the lone pairs of the nitrogen atoms and the positively charged carbon atom of the carbonyl or isocyanide ligand, and illustrate a novel (non-hydrogen bonding) second coordination sphere effect in controlling reactivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja077328d | DOI Listing |
Introduction: Health Professions Scholarship Program (HPSP) medical students typically enter the military with minimal military experience, commissioning specifically for the scholarship. During medical school, the only required training is a 5- to 6-week officer training course, which is neither specific to medicine nor guaranteed to be at the beginning of school, since it can be taken at any time. This lack of prior experience can lead to decreased confidence and understanding of the HPSP, specifically the medical school timeline leading up to the military match process and overall military.
View Article and Find Full Text PDFJ Coll Physicians Surg Pak
January 2025
Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
The Valsalva manoeuvre is widely recognised for its effectiveness in reverting supra-ventricular tachycardia (SVT) in patients with good coordination. However, this is not applicable in sedated ventilated patients and there is a dearth of literature regarding the application of Valsalva in unconscious patients on mechanical ventilation. The authors, for the first time, present a novel non-pharmacological method to treat SVT in critically ill patients on mechanical ventilation, employing the high positive end-expiratory pressure (PEEP) technique.
View Article and Find Full Text PDFNat Med
January 2025
Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
Genetic diagnosis of rare diseases requires accurate identification and interpretation of genomic variants. Clinical and molecular scientists from 37 expert centers across Europe created the Solve-Rare Diseases Consortium (Solve-RD) resource, encompassing clinical, pedigree and genomic rare-disease data (94.5% exomes, 5.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Plant-Fusarium Interactions Research Team, School of BioSciences, University of Melbourne, Parkville, Australia.
Jasmonic acid (JA), ethylene (ET) and salicylic acid (SA) are the three major phytohormones coordinating plant defense responses, and all three are implicated in the defense against the fungal pathogen Fusarium oxysporum. However, their distinct modes of action and possible interactions remain unknown, in part because all spatial information on their activity is lacking. Here, we set out to probe this spatial aspect of plant immunity by using live-microscopy with newly developed fluorescence-based transcriptional reporter lines.
View Article and Find Full Text PDFSoc Cogn Affect Neurosci
January 2025
School of Psychology, Central China Normal University, Wuhan 430079, China.
Oxytocin, a neuropeptide pivotal in social and reproductive behaviors, has recently gained attention for its potential impact on cognitive processes relevant to creativity. Yet, the direct intricate interplay between oxytocin and creativity, particularly in the context of individual differences in motivational orientations, remains poorly understood. Here, we investigated the effects of intranasal oxytocin on creative thinking in individuals characterized by varying levels of approach and avoidance motivations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!