Through analyzing the relationships of nitrogen concentration in cotton leaf under different nitrogen supply levels with canopy multi-spectral reflectance and its derived ratio vegetation index (RVI, rholambda1/rholambda2), normalized difference vegetation index (NDVI, (rho(lambda1) - rho(lambda2))/(rho(lambda1)) + rho(lambda2)) and differential vegetation index (DVI, rho(lambda1) - rho(lambda2)), the sensitive wave bands and prediction functions of cotton leaf nitrogen concentration were worked out. The vegetation index composed of visible region (610, 660, 680 and 710 nm) and near infrared region (760, 810, 870, 950, 1 100 and 1 220 nm) had a higher correlation with the nitrogen concentration in cotton leaf, and the RVI composed of 950 nm and 710 nm could best predict the leaf nitrogen concentration. The validation with independent field experimental data indicated that RVI (950 nm and 710 nm) -based model was suitable for estimation of leaf nitrogen concentration of different cotton cultivars at their different growth stages.
Download full-text PDF |
Source |
---|
Chem Sci
December 2024
Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University Changsha 410083 P. R. China
The development of catalytic technologies for sustainable energy conversion is a critical step toward addressing fossil fuel depletion and associated environmental challenges. High-efficiency catalysts are fundamental to advancing these technologies. Recently, field-effect facilitated catalytic processes have emerged as a promising approach in energy and environmental applications, including water splitting, CO reduction, nitrogen reduction, organic electrosynthesis, and biomass recycling.
View Article and Find Full Text PDFHeliyon
December 2024
Groupe de Recherche en Écologie de la MRC Abitibi (GREMA), Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, 341 Rue Principale N, Amos, QC, J9T 2L8, Canada.
Lake cyanobacteria can overgrow and form blooms, often releasing life-threatening toxins. Harmful algal blooms (HABs) are typically caused by excess nutrients and high temperatures, but recent observations of cyanobacteria beneath the ice in boreal lakes suggest that the dynamics are more complex. This study investigates the seasonal dynamics of HABs in boreal lakes and identifies their driving factors.
View Article and Find Full Text PDFACS Omega
December 2024
College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China.
In this study, a recirculating aquaculture system (RAS) was constructed, and a denitrification bioreactor was installed to enhance nitrogen removal. In addition, the nitrogen removal performance of the system was investigated. FeS was prepared by calcining iron (Fe) and S powder, which was used as an electron donor for denitrification.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603, Limassol, Cyprus.
Medicinal and aromatic plant (MAP) production is gaining popularity for industrial agriculture, with phytochemical compounds having a significant impact on human health. Plant fertilization must be carefully considered as it is strongly affecting the biochemical profile of MAPs. The present study examined the responses to different nitrogen (N: 75, 150, and 300 mg/L), potassium (K: 150, 350, and 550 mg/L), and phosphorus (P: 50, 75, and 100 mg/L) concentration in the nutrient solution (NS) in hydroponics.
View Article and Find Full Text PDFHeliyon
January 2025
Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai, 519087, China.
Rivers link land and sea, playing an important role in the global carbon and nitrogen cycles. By conducting surveys and research on river flow in a specific region, we can gain a better understanding of the nitrogen and carbon sinks in the area and their contributions to the environment. In this study, we conducted bi-annual sampling and monitoring of river flow in the Pearl River Delta downstream of Zhuhai, China, and collected hydrological information.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!