A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oxidant generation predominates around calcifying foci and enhances progression of aortic valve calcification. | LitMetric

Oxidant generation predominates around calcifying foci and enhances progression of aortic valve calcification.

Arterioscler Thromb Vasc Biol

Vascular Biology Laboratory, Heart Institute, University of São Paulo School of Medicine, Av. Eneas Carvalho Aguiar, 44, Annex II, 9th floor, CEP 05403-000, São Paulo, Brazil.

Published: March 2008

Objective: We hypothesized that reactive oxygen species (ROS) contribute to progression of aortic valve (AV) calcification/stenosis.

Methods And Results: We investigated ROS production and effects of antioxidants tempol and lipoic acid (LA) in calcification progression in rabbits given 0.5% cholesterol diet +10(4) IU/d Vit.D2 for 12 weeks. Superoxide and H2O2 microfluorotopography and 3-nitrotyrosine immunoreactivity showed increased signals not only in macrophages but preferentially around calcifying foci, in cells expressing osteoblast/osteoclast, but not macrophage markers. Such cells also showed increased expression of NAD(P)H oxidase subunits Nox2, p22phox, and protein disulfide isomerase. Nox4, but not Nox1 mRNA, was increased. Tempol augmented whereas LA decreased H2O2 signals. Importantly, AV calcification, assessed by echocardiography and histomorphometry, decreased 43% to 70% with LA, but increased with tempol (P < or = 0.05). Tempol further enhanced apoptosis and Nox4 expression. In human sclerotic or stenotic AV, we found analogous increases in ROS production and NAD(P)H oxidase expression around calcifying foci. An in vitro vascular smooth muscle cell (VSMC) calcification model also exhibited increased, catalase-inhibitable, calcium deposit with tempol, but not with LA.

Conclusions: Our data provide evidence that ROS, particularly hydrogen peroxide, potentiate AV calcification progression. However, tempol exhibited a paradoxical effect, exacerbating AV/vascular calcification, likely because of its induced increase in peroxide generation.

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.107.156745DOI Listing

Publication Analysis

Top Keywords

calcifying foci
12
progression aortic
8
aortic valve
8
ros production
8
calcification progression
8
nadph oxidase
8
increased tempol
8
calcification
6
tempol
6
increased
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!