Tamoxifen is widely used for the treatment of hormonally responsive breast cancers. However, some resistant breast cancers develop a growth proliferative response to this drug, as evidenced by tumor regression upon its withdrawal. To elucidate the molecular mediators of this paradox, tissue samples from a patient with tamoxifen-stimulated breast cancer were analyzed. These studies revealed that loss of the cyclin-dependent kinase inhibitor p21 was associated with a tamoxifen growth-inducing phenotype. Immortalized human breast epithelial cells with somatic deletion of the p21 gene were then generated and displayed a growth proliferative response to tamoxifen, whereas p21 wild-type cells demonstrated growth inhibition upon tamoxifen exposure. Mutational and biochemical analyses revealed that loss of p21's cyclin-dependent kinase inhibitory property results in hyperphosphorylation of estrogen receptor-alpha, with subsequent increased gene expression of estrogen receptor-regulated genes. These data reveal a previously uncharacterized molecular mechanism of tamoxifen resistance and have potential clinical implications for the management of tamoxifen-resistant breast cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2224203 | PMC |
http://dx.doi.org/10.1073/pnas.0710887105 | DOI Listing |
Int J Clin Oncol
January 2025
Translational Research Support Section, National Cancer Center Hospital East, Chiba, Japan.
Early cancer detection substantially improves the rate of patient survival; however, conventional screening methods are directed at single anatomical sites and focus primarily on a limited number of cancers, such as gastric, colorectal, lung, breast, and cervical cancer. Additionally, several cancers are inadequately screened, hindering early detection of 45.5% cases.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Istanbul University, Faculty of Science, Department of Biology, Istanbul, Türkiye.
In this study, the effects of histone deacetylase inhibitor CI-994 and nanotechnological drug liposomal cisplatin LipoPlatin on Luminal A breast cancer and triple-negative breast cancer were explored using agents alone and in combination. MCF-7 and MDA-MB-231 cell lines were used. Cell viability, and cell index values obtained from xCELLigence System, MI, BrdU LI and AI were evaluated in experiments.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh-11623, Saudi Arabia.
Triple-negative breast cancer (TNBC) is a highly aggressive cancer with distant metastasis. Accumulated evidence has demonstrated that exosomes are involved in TNBC metastasis. Elucidating the mechanism underlying TNBC metastasis has important clinical significance.
View Article and Find Full Text PDFPsychooncology
January 2025
Department of Psychology, Maltepe University, İstanbul, Turkey.
Objective: In recent years, many studies have investigated the triggers, perpetuating factors, and outcomes of Fear of Cancer Recurrence (FCR), highlighting its complexity with multiple dimensions that encompass both antecedents and consequences. In this sense, the cognitive approach to FCR has explored variables such as metacognition, maladaptive coping strategies, and intolerance of uncertainty (IU). On the other hand, the findings of a restricted number of studies investigating the relationship between FCR and stated variables appear to be inconsistent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!