In a previous study, Kaestle and Smith [Am J Phys Anthropol 115 (2001) 1-12] supported a recent (A.D. 1000) Numic expansion into the Great Basin region based on a molecular and statistical analysis of mitochondrial DNA (mtDNA) of ancient and modern native inhabitants of the region. Their statistical methodology could not rule out the possibility that observed differences in haplogroup frequencies are instead the result of long-term microevolutionary change within a single population. To distinguish more effectively between a Numic expansion versus population continuity, we employed a novel computer simulation approach that incorporates microevolutionary factors likely to affect human population genetic variation. We test whether the observed differences in haplogroup frequencies between ancient and modern Great Basin groups could have been produced solely via in situ microevolutionary change. Our results indicate that for reasonable demographic conditions, the observed genetic differences between the observed samples are consistent with population continuity if gene flow among prehistoric Great Basin local groups was less than 1% of local group size per generation. Our analysis also supports a recent population expansion if gene flow between neighboring groups exceeded 8% of local group size per generation. The simulations demonstrate that relatively low gene flow levels and random genetic drift can produce the observed degree of genetic differences between population samples. Although this study focuses on the Numic expansion, this simulation approach can be applied to any geographic region for which genetic data have been collected to address similar questions of population relationships over time.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajpa.20764DOI Listing

Publication Analysis

Top Keywords

numic expansion
16
great basin
16
population continuity
12
simulation approach
12
gene flow
12
population
8
novel computer
8
computer simulation
8
ancient modern
8
observed differences
8

Similar Publications

Objectives: The expansion of Numic speaking populations into the Great Basin required individuals to adapt to a relatively unproductive landscape. Researchers have proposed numerous social and subsistence strategies to explain how and why these settlers were able to replace any established populations, including private property and intensive plant processing. Here we evaluate these hypotheses and propose a new strategy involving the use of landscape fire to increase resource encounter rates.

View Article and Find Full Text PDF

In a previous study, Kaestle and Smith [Am J Phys Anthropol 115 (2001) 1-12] supported a recent (A.D. 1000) Numic expansion into the Great Basin region based on a molecular and statistical analysis of mitochondrial DNA (mtDNA) of ancient and modern native inhabitants of the region.

View Article and Find Full Text PDF

Ancient mitochondrial DNA evidence for prehistoric population movement: the Numic expansion.

Am J Phys Anthropol

May 2001

Department of Anthropology, Yale University, New Haven, Connecticut 06520, USA.

The mitochondrial DNA of modern Native Americans has been shown to fall into one of at least five haplogroups (A, B, C, D, or X) whose frequencies differ among tribal groups. The frequencies of these five haplogroups in a collection of ancient individuals from Western Nevada dating to between approximately 350-9,200 years BP were determined. These data were used to test the hypothesis, supported by archaeological and linguistic data, that the current inhabitants of the Great Basin, the Numic speakers, are recent immigrants into the area who replaced the previous non-Numic inhabitants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!