We have developed a novel series of potent and selective factor Xa inhibitors that employ a key 7-fluoroindazolyl moiety. The 7-fluoro group on the indazole scaffold replaces the carbonyl group of an amide that is found in previously reported factor Xa inhibitors. The structure of a factor Xa cocrystal containing 7-fluoroindazole 51a showed the 7-fluoro atom hydrogen-bonding with the N-H of Gly216 (2.9 A) in the peptide backbone. Thus, the 7-fluoroindazolyl moiety not only occupied the same space as the carbonyl group of an amide found in prior factor Xa inhibitors but also maintained a hydrogen bond interaction with the protein's beta-sheet domain. The structure-activity relationship for this series was consistent with this finding, as the factor Xa inhibitory potencies were about 60-fold greater (DeltaDelta G approximately 2.4 kcal/mol) for the 7-fluoroindazoles 25a and 25c versus the corresponding indazoles 25b and 25d. Highly convergent synthesis of these factor Xa inhibitors is also described.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm701217r | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!