Posttranslational modification through palmitoylation regulates protein localization and function. In this study, we identify a role for the Drosophila melanogaster palmitoyl transferase Huntingtin-interacting protein 14 (HIP14) in neurotransmitter release. hip14 mutants show exocytic defects at low frequency stimulation and a nearly complete loss of synaptic transmission at higher temperature. Interestingly, two exocytic components known to be palmitoylated, cysteine string protein (CSP) and SNAP25, are severely mislocalized at hip14 mutant synapses. Complementary DNA rescue and localization experiments indicate that HIP14 is required solely in the nervous system and is essential for presynaptic function. Biochemical studies indicate that HIP14 palmitoylates CSP and that CSP is not palmitoylated in hip14 mutants. Furthermore, the hip14 exocytic defects can be suppressed by targeting CSP to synaptic vesicles using a chimeric protein approach. Our data indicate that HIP14 controls neurotransmitter release by regulating the trafficking of CSP to synapses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2373489PMC
http://dx.doi.org/10.1083/jcb.200710061DOI Listing

Publication Analysis

Top Keywords

indicate hip14
12
huntingtin-interacting protein
8
palmitoyl transferase
8
targeting csp
8
csp synaptic
8
synaptic vesicles
8
hip14
8
neurotransmitter release
8
hip14 mutants
8
exocytic defects
8

Similar Publications

Protein S-palmitoylation, the addition of a long-chain fatty acid to target proteins, is among the most frequent reversible protein modifications in Metazoa, affecting subcellular protein localization, trafficking and protein-protein interactions. S-palmitoylated proteins are abundant in the neuronal system and are associated with neuronal diseases and cancer. Despite the importance of this post-translational modification, it has not been thoroughly studied in the model organism Drosophila melanogaster.

View Article and Find Full Text PDF

Sudden death due to paralysis and synaptic and behavioral deficits when Hip14/Zdhhc17 is deleted in adult mice.

BMC Biol

December 2016

Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia (UBC), Vancouver, BC, V5Z 4H4, Canada.

Background: Palmitoylation, the addition of palmitate to proteins by palmitoyl acyltransferases (PATs), is an important regulator of synaptic protein localization and function. Many palmitoylated proteins and PATs have been implicated in neuropsychiatric diseases, including Huntington disease, schizophrenia, amyotrophic lateral sclerosis, Alzheimer disease, and X-linked intellectual disability. HIP14/DHHC17 is the most conserved PAT that palmitoylates many synaptic proteins.

View Article and Find Full Text PDF

Palmitoyl acyl transferases (PATs) play a critical role in protein trafficking and function. Huntingtin interacting protein 14 (HIP14) is a PAT that acts on proteins associated with neuronal transmission, suggesting that deficient protein palmitoylation by HIP14, which occurs in the YAC128 model of Huntington's disease (HD), might have deleterious effects on neurobehavioral processing. HIP14 knockout mice show biochemical and neuropathological changes in the striatum, a forebrain region affected by HD that guides behavioral choice and motor flexibility.

View Article and Find Full Text PDF

Protein-protein interactions play an important role in regulating the expression of huntingtin protein (htt). Expansion of polyglutamine tracts in htt results in neurodegenerative Huntington disease. Huntingtin interacting protein (HIP14) is an important interacting partner of htt and the altered interactions have been proposed to play an important role in disease progression.

View Article and Find Full Text PDF

The Golgi-specific zinc finger protein GODZ (palmitoyl acyltransferase/DHHC-3) mediates the palmitoylation and post-translational modification of many protein substrates that regulate membrane-protein interactions. Here, we show that GODZ also mediates Ca(2+) transport in expressing Xenopus laevis oocytes. Two-electrode voltage-clamp, fluorescence, and (45)Ca(2+) isotopic uptake determinations demonstrated voltage- and concentration-dependent, saturable, and substrate-inhibitable Ca(2+) transport in oocytes expressing GODZ cRNA but not in oocytes injected with water alone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!