The origin and modes of transmission of introns remain matters of much debate. Previous studies of the group I intron in the angiosperm cox1 gene inferred frequent angiosperm-to-angiosperm horizontal transmission of the intron from apparent incongruence between intron phylogenies and angiosperm phylogenies, patchy distribution of the intron among angiosperms, and differences between cox1 exonic coconversion tracts (the first 22 nt downstream of where the intron inserted). We analyzed the cox1 gene in 179 angiosperms, 110 of them containing the intron (intron(+)) and 69 lacking it (intron(-)). Our taxon sampling in Araceae is especially dense to test hypotheses about vertical and horizontal intron transmission put forward by Cho and Palmer (1999. Multiple acquisitions via horizontal transfer of a group I intron in the mitochondrial coxl gene during evolution of the Araceae family. Mol Biol Evol. 16:1155-1165). Maximum likelihood trees of Araceae cox1 introns, and also of all angiosperm cox1 introns, are largely congruent with known phylogenetic relationships in these taxa. The exceptions can be explained by low signal in the intron and long-branch attraction among a few taxa with high mitochondrial substitution rates. Analysis of the 179 coconversion tracts reveals 20 types of tracts (11 of them only found in single species, all involving silent substitutions). The distribution of these tracts on the angiosperm phylogeny shows a common ancestral type, characterizing most intron(+) and some intron(-) angiosperms, and several derivative tract types arising from gradual back mutation of the coconverted nucleotides. Molecular clock dating of small intron(+) and intron(-) sister clades suggests that coconversion tracts have persisted for 70 Myr in Araceae, whose cox1 sequences evolve comparatively slowly. Sequence similarity among the 110 introns ranges from 91% to identical, whereas putative homologs from fungi are highly different, but sampling in fungi is still sparse. Together, these results suggest that the cox1 intron entered angiosperms once, has largely or entirely been transmitted vertically, and has been lost numerous times, with coconversion tract footprints providing unreliable signal of former intron presence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/molbev/msm241 | DOI Listing |
Curr Pharm Des
January 2025
School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Hemophilia A (HA) is an inherited condition that is characterized by a lack of coagulation factor VIII (FVIII), which is needed for blood clotting. To produce recombinant factor VIII (rFVIII) for treatment, innovative methods are required. This study presents a thorough examination of the genetic engineering and biotechnological methods that are essential for the production of this complex process.
View Article and Find Full Text PDFUrol Oncol
January 2025
Department of Zoology, University of Calcutta, Kolkata, West Bengal, India.
Background: Clear cell renal cell carcinoma (ccRCC) is a prevalent and aggressive malignancy, with the von Hippel-Lindau (VHL) gene playing a critical role in its pathogenesis. However, the association between VHL gene variants and sporadic ccRCC risk remains unexplored in the Indian population. This study aimed to investigate the somatic and germline variants of the VHL gene in sporadic ccRCC patients from West Bengal, India, and their association with disease risk and clinicopathological parameters.
View Article and Find Full Text PDFMol Cell
January 2025
European Molecular Biology Laboratory (EMBL), EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France. Electronic address:
The minor spliceosome catalyzes excision of U12-dependent introns from precursors of eukaryotic messenger RNAs (pre-mRNAs). This process is critical for many cellular functions, but the underlying molecular mechanisms remain elusive. Here, we report a cryoelectron microscopy (cryo-EM) reconstruction of the 13-subunit human U11 small nuclear ribonucleoprotein particle (snRNP) complex in apo and substrate-bound forms, revealing the architecture of the U11 small nuclear RNA (snRNA), five minor spliceosome-specific factors, and the mechanism of the U12-type 5' splice site (5'SS) recognition.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Division of Neurology, Cincinnati Children's Hospital, 3333 Burnet Ave, Cincinnati, OH 45229, United States.
Myotonic Dystrophy type 2 (DM2) is a multisystem disease affecting many tissues, including skeletal muscle, heart, and brain. DM2 is caused by unstable expansion of CCTG repeats in an intron 1 of a gene coding for cellular nuclear binding protein (CNBP). The expanded CCTG repeats cause DM2 pathology due to the accumulation of RNA CCUG repeats, which affect RNA processing in patients' cells.
View Article and Find Full Text PDFNeurol Genet
December 2024
From the The Institute of Clinical Medicine (K.Õ., T.R., E.Õ.-S., L.M., S. Pajusalu), Faculty of Medicine, University of Tartu; Genetics and Personalized Medicine Clinic (K.Õ., T.R., L.M., Sander Pajusalu); Children's Clinic (E.O.-S.); Pathology Department (S. Puusepp), Tartu University Hospital, Estonia; Folkhalsan Research Center (M.S., B.U.), Helsinki; and Tampere Neuromuscular Center (B.U.), Tampere, Finland.
Background And Objectives: Tibial muscular dystrophy (TMD) is an autosomal dominant, slowly progressive late-onset distal myopathy. TMD was first described in 1991 by Udd et al. in Finnish patients, who were later found to harbor a heterozygous unique 11-bp insertion/deletion in the last exon of the gene-the Finnish founder variant (FINmaj).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!