Carboxy-terminal PDZ ligand of nNOS (CAPON) protein, as an adaptor, binds to nNOS via the PDZ domain helping regulate neuronal nitric oxide synthase (nNOS) activity at post-synaptic sites in neurons (Jaffrey et al., Neuron, 20, 115-124, 1998). Recently, it has been reported that CAPON is present in mouse muscle and may be involved in mouse muscle growth, injury, and repair possibly by regulating the stability, activity, or position of nNOS (Segalat et al., Experimental Cell Research, 302, 170-179, 2005). The present study was to explore the expression patterns and roles of CAPON as well as NOS in rat muscle regeneration after nerve injury. Normal Sprague-Dawley rats were subjected to right sciatic nerve crush injury. Walking track analysis, real time polymerase chain reaction, Western blotting, in situ hybridization, immunocytochemistry, and co-immunoprecipitation techniques were used. It revealed that CAPON mRNA increased, which peaked on days 1 and 28, whereas nNOS mRNA underwent a downregulation in the ipsilateral gastrocnemius muscles after sciatic nerve injury. Their proteins approximately paralleled the mRNA expression. CAPON and nNOS were identified in the activated satellite cells or myotubes and their in vivo interaction was verified. However, eNOS and iNOS proteins suffered an upregulation and were detected in activated satellite cells or myotubes. These data suggest that CAPON and all these three isoforms of NOS might be involved in muscle regeneration after nerve injury. Further study is necessary for a better understanding of the potential functional link between CAPON, NOS, and muscle regeneration, with possible application to therapy for skeletal muscle repair from nerve injury.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12031-007-9005-yDOI Listing

Publication Analysis

Top Keywords

nerve injury
20
muscle regeneration
16
nitric oxide
8
rat muscle
8
mouse muscle
8
regeneration nerve
8
sciatic nerve
8
activated satellite
8
satellite cells
8
cells myotubes
8

Similar Publications

Background: Loss of key-pinch sensation after median nerve injury poses significant functional detriment. Nerve transfers are utilized to improve function after nerve injury and size matching of donor and recipient nerves is important to optimize success. This anthropometric study investigates the anatomy of the superficial branch of the radial nerve (SBRN) to the thumb and index finger and explores radial to median sensory nerve transfers, a necessary but not heavily discussed facet of nerve transfers for the hand.

View Article and Find Full Text PDF

Traumatic optic neuropathy (TON) is a rare condition resulting from damage to the optic nerve due to craniofacial trauma. It can present as direct or indirect injuries, with mechanisms ranging from mechanical disruption by fractures in direct TON to transmitted forces causing shearing and ischemia in indirect TON. These injuries often lead to significant visual impairment or complete vision loss, requiring timely diagnosis and intervention.

View Article and Find Full Text PDF

Background Femoral neuropathy is a significant postoperative complication in gynecological surgery that can severely impact patient mobility and quality of life. Among various mechanisms of nerve injury, retractor-induced compression against the pelvic sidewall has been identified as a particularly crucial causative factor. Despite this well-recognized mechanism and its clinical importance, few studies have investigated specific preventive strategies for this iatrogenic complication.

View Article and Find Full Text PDF

Tendon Transfer Procedures for Correction of Foot Drop Due to Injury to the Peripheral Nerves or Muscles.

J Brachial Plex Peripher Nerve Inj

January 2025

Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tübingen, Tübingen, Germany.

 Foot drop is a challenging condition that significantly impacts the affected patient's mobility and quality of life. Tendon transfer has emerged as a viable treatment option. We hereby present data of the tendon transfer procedures in patients with foot drop in our department.

View Article and Find Full Text PDF

Introduction: Medial open wedge-high tibial osteotomy (MOW-HTO) is a standard procedure for treating moderate varus arthritis in active adults. The reason for its popularity is having lesser complications than other types of HTO. However, it is not devoid of challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!