Using conventional electrophysiological technique, we investigated the effects of stimulating the medial prefrontal cortex (mPFC) on plasticity of frequency receptive field (RF) in auditory cortical (AC) neurons in rats. When the mPFC was electrically stimulated, the RF plasticity of 51 (27.2%) neurons was not affected and that of 137 neurons (72.8%) was either inhibited (71 neurons, 37.7%) or facilitated (66 neurons, 35.1%). The modulation of RF plasticity by the stimulation of mPFC was dependent upon the time interval between acoustic and electrical stimuli. The best interval time that produced optimal modulation (inhibition or facilitation) ranged from 5 to 30 ms. The inhibitory modulation of mPFC prolonged RF shifting time and shortened RF recovery time. Conversely, the facilitatory modulation of mPFC shortened RF shifting time and prolonged RF recovery time. Our results suggest that the mPFC may affect the plasticity of functional activity in AC neurons, and also may participate in the process of auditory learning and memory.
Download full-text PDF |
Source |
---|
Sci Rep
January 2025
Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, 224001, Jiangsu, China.
Convolutional Neural Networks (CNNs) have achieved remarkable segmentation accuracy in medical image segmentation tasks. However, the Vision Transformer (ViT) model, with its capability of extracting global information, offers a significant advantage in contextual information compared to the limited receptive field of convolutional kernels in CNNs. Despite this, ViT models struggle to fully detect and extract high-frequency signals, such as textures and boundaries, in medical images.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electronics and Information, Xijing University, Xi'an, 710123, China.
To enhance high-frequency perceptual information and texture details in remote sensing images and address the challenges of super-resolution reconstruction algorithms during training, particularly the issue of missing details, this paper proposes an improved remote sensing image super-resolution reconstruction model. The generator network of the model employs multi-scale convolutional kernels to extract image features and utilizes a multi-head self-attention mechanism to dynamically fuse these features, significantly improving the ability to capture both fine details and global information in remote sensing images. Additionally, the model introduces a multi-stage Hybrid Transformer structure, which processes features at different resolutions progressively, from low resolution to high resolution, substantially enhancing reconstruction quality and detail recovery.
View Article and Find Full Text PDFSupport Care Cancer
January 2025
Department of Oncology, University of Calgary, Calgary, Canada.
Purpose: Longitudinal collection of patient experience data promotes continual high-quality care and guides quality improvement (QI) work. The purpose of this study was to investigate patient experience in the radiation department during COVID-19 and compare results to previous data collected in 2019.
Methods: Patient experience data was collected using the Your Voice Matters (YVM) survey.
Expert Rev Med Devices
January 2025
Boston Scientific Neuromodulation, Valencia, California, USA.
Background: Fast-acting Sub-perception Therapy (FAST) is a novel spinal cord stimulation (SCS) modality delivering paresthesia-free pain relief. Our study evaluated the longer-term, real-world impact of FAST on chronic pain.
Research Design And Methods: As part of a multicenter, real-world, consecutive case series, we retrospectively identified patients who used FAST-SCS and analyzed their data.
Ear Hear
January 2025
Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA.
Objectives: This study was designed to (1) compare preactivation and postactivation performance with a cochlear implant for children with functional preoperative low-frequency hearing, (2) compare outcomes of electric-acoustic stimulation (EAS) versus electric-only stimulation (ES) for children with versus without hearing preservation to understand the benefits of low-frequency acoustic cues, and (3) to investigate the relationship between postoperative acoustic hearing thresholds and performance.
Design: This was a prospective, 12-month between-subjects trial including 24 pediatric cochlear implant recipients with preoperative low-frequency functional hearing. Participant ages ranged from 5 to 17 years old.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!