ErbB-2 receptor cooperates with E6/E7 oncoproteins of HPV type 16 in breast tumorigenesis.

Cell Cycle

Montreal Center for Experimental Therapeutics in Cancer, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec H3T 1E2 Canada.

Published: December 2007

The ErbB-2 receptor is overexpressed in roughly 30% of human breast cancers. Moreover, approximately 50% of breast cancers are positive for high-risk human papillomaviruses (HPVs), specifically types 16 and 18. Recently, we reported that ErbB-2 cooperates with E6/E7 oncoproteins of HPV type 16 to induce neoplastic transformation of human normal oral epithelial cells. We also demonstrated that E6/E7 of HPV type 16 converts non-invasive breast cancer cells to an invasive form. In order to investigate the effect of ErbB-2/E6/E7 cooperation in breast carcinogenesis, we generated double transgenic mice carrying ErbB-2 and E6/E7 of HPV type 16 under mouse mammary tumor virus (MMTV) and human keratin 14 promoters, respectively. Within six months, these double transgenic mice developed large and extensive invasive breast cancer in comparison to ErbB-2 or E6/E7 singly transgenic mice. Histological analysis of ErbB-2/E6/E7 transgenic mice tumors showed the presence of invasive breast carcinomas. However, the breast tissues from ErbB-2 and E6/E7 transgenic mice showed only in-situ cancer and normal mammary phenotype, respectively. In parallel, we examined the cooperation effect of ErbB-2 and E6/E7 in the human breast cancer cell line, BT20; in comparison to ErbB-2 and E6/E7 alone as well as wild type cells, we found that ErbB 2/E6/E7 together stimulate colony formation and cell migration in the BT20 cell line. Furthermore, we found that beta-catenin is constitutively phosphorylated by c-Src and consequently trans-located to the nucleus in ErbB-2/E6/E7-breast cancer cells. These findings provide evidence that the ErbB-2 receptor cooperates with high-risk HPVs in breast tumorigenesis via beta-catenin activation.

Download full-text PDF

Source
http://dx.doi.org/10.4161/cc.6.23.4949DOI Listing

Publication Analysis

Top Keywords

transgenic mice
20
erbb-2 e6/e7
20
hpv type
16
erbb-2 receptor
12
breast cancer
12
breast
10
erbb-2
9
receptor cooperates
8
e6/e7
8
cooperates e6/e7
8

Similar Publications

Neuroinflammation and mitochondrial dysfunction are early events in Alzheimer's disease (AD) and contribute to neurodegeneration and cognitive impairment. Evidence suggests that the inflammatory axis mediated by macrophage migration inhibitory factor (MIF) binding to its receptor, CD74, plays an important role in many central nervous system (CNS) disorders such as AD. Our group has developed DRhQ, a novel CD74 binding construct which competitively inhibits MIF binding, blocks macrophage activation and migration into the CNS, enhances anti-inflammatory microglia cell numbers and reduces pro-inflammatory gene expression.

View Article and Find Full Text PDF

Transgenic mice and organoid models, such as three-dimensional tumoroid cultures, have emerged as powerful tools for investigating cancer development and targeted therapies. Yet, the extent to which these preclinical models recapitulate the cellular identity of heterogeneous malignancies, like neuroblastoma (NB), remains to be validated. Here, we characterized the transcriptional landscape of TH-MYCN tumors by single-cell RNA sequencing (scRNA-seq) and developed ex vivo tumoroids.

View Article and Find Full Text PDF

Multimodal imaging of murine cerebrovascular dynamics induced by transcranial pulse stimulation.

Alzheimers Dement

January 2025

Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.

Introduction: Transcranial pulse stimulation (TPS) is increasingly being investigated as a promising potential treatment for Alzheimer's disease (AD). Although the safety and preliminary clinical efficacy of TPS short pulses have been supported by neuropsychological scores in treated AD patients, its fundamental mechanisms are uncharted.

Methods: Herein, we used a multi-modal preclinical imaging platform combining real-time volumetric optoacoustic tomography, contrast-enhanced magnetic resonance imaging, and ex vivo immunofluorescence to comprehensively analyze structural and hemodynamic effects induced by TPS.

View Article and Find Full Text PDF

Inhibition of IFITM3 in cerebrovascular endothelium alleviates Alzheimer's-related phenotypes.

Alzheimers Dement

January 2025

Center for Geriatric Medicine, Key Laboratory of Alzheimer's Disease of Zhejiang Province, The First Affiliated Hospital and Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China.

Introduction: Interferon-induced transmembrane protein 3 (IFITM3) modulates γ-secretase in Alzheimer's Disease (AD). Although IFITM3 knockout reduces amyloid β protein (Aβ) production, its cell-specific effect on AD remains unclear.

Methods: Single nucleus RNA sequencing (snRNA-seq) was used to assess IFITM3 expression.

View Article and Find Full Text PDF

Tumor development often requires cellular adaptation to a unique, high metabolic state; however, the molecular mechanisms that drive such metabolic changes in TFE3-rearranged renal cell carcinoma (TFE3-RCC) remain poorly understood. TFE3-RCC, a rare subtype of RCC, is defined by the formation of chimeric proteins involving the transcription factor TFE3. In this study, we analyzed cell lines and genetically engineered mice, demonstrating that the expression of the chimeric protein PRCC-TFE3 induced a hypoxia-related signature by transcriptionally upregulating HIF1α and HIF2α.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!