The Bacillus subtilis sigI gene, which is a member of the class VI heat shock genes of the B. subtilis heat shock stimulon, encodes an alternative sigma factor whose regulon is poorly defined. In this study, by using a binary vector system, we showed that B. subtilis SigI could drive expression of a transcriptional fusion between the sigI regulatory region from Bacillus licheniformis, Bacillus sp. strain NRRL B-14911, B. subtilis, or Bacillus thuringiensis and the xylE reporter gene in B. subtilis. The transcriptional initiation sites of these fusions in B. subtilis were mapped by primer extension analyses. A putative consensus promoter sequence probably recognized by the B. subtilis SigI was thus deduced. Using a consensus sequence-based search procedure, we found putative sigmaI promoters preceding the actin homolog gene mreBH and the bacitracin resistance gene bcrC of B. subtilis. Overexpression of the B. subtilis sigI gene could specifically stimulate expression of both an mreBH promoter region-bgaB fusion and a bcrC promoter region-bgaB fusion. Expression of these two fusions at the amyE locus of the B. subtilis chromosome was heat inducible and SigI dependent as revealed by sigI gene disruption experiments. Primer extension analysis showed that the identified mreBH and bcrC transcriptional start sites were at appropriate distances from their sigmaI promoter elements. This further supports the notion that SigI can directly regulate mreBH and bcrC expression. Taken together, these results strongly suggest that mreBH and bcrC are new members of the SigI regulon.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2258693 | PMC |
http://dx.doi.org/10.1128/JB.01497-07 | DOI Listing |
Res Microbiol
July 2024
Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic. Electronic address:
Unlike Bacillus subtilis, Streptomyces coelicolor contains nine SigB homologues of the stress-response sigma factor SigB. By using a two-plasmid system, we previously identified promoters recognized by these sigma factors. Almost all promoters were recognized by several SigB homologues.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2023
Department of Microbiology, Harvard Medical School, Boston, MA 02115.
Gram-positive bacteria use SigI/RsgI-family sigma factor/anti-sigma factor pairs to sense and respond to cell wall defects and plant polysaccharides. In this signal transduction pathway involves regulated intramembrane proteolysis (RIP) of the membrane-anchored anti-sigma factor RsgI. However, unlike most RIP signaling pathways, site-1 cleavage of RsgI on the extracytoplasmic side of the membrane is constitutive and the cleavage products remain stably associated, preventing intramembrane proteolysis.
View Article and Find Full Text PDFbioRxiv
June 2023
Department of Microbiology, Harvard Medical School, Boston, MA 02115.
Unlabelled: Gram-positive bacteria use SigI/RsgI-family sigma factor/anti-sigma factor pairs to sense and respond to cell wall defects and plant polysaccharides. In this signal transduction pathway involves regulated intramembrane proteolysis (RIP) of the membrane-anchored anti-sigma factor RsgI. However, unlike most RIP signaling pathways, site-1 cleavage of RsgI on the extracytoplasmic side of the membrane is constitutive and the cleavage products remain stably associated, preventing intramembrane proteolysis.
View Article and Find Full Text PDFGenes Cells
February 2022
Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
In a Bacillus subtilis ugtP mutant lacking glucolipids, SigI was activated in the log phase, and the activation of SigI in the mutant was suppressed by the expression of native ugtP. By contrast, SigI was inhibited in a yfnI mutant lacking one of the lipoteichoic acid (LTA) synthase genes, and the inhibition was suppressed by the expression of yfnI. A series of mutation analyses of the sigI promoter revealed that the two WalR binding sites were involved in the increase of P -lacZ activity in the ugtP mutant and decrease of the lacZ activity in the yfnI mutant.
View Article and Find Full Text PDFElife
September 2020
Department of Microbiology, Cornell University, Ithaca, United States.
Bacteria surround themselves with peptidoglycan, an adaptable enclosure that contributes to cell shape and stability. Peptidoglycan assembly relies on penicillin-binding proteins (PBPs) acting in concert with SEDS-family transglycosylases RodA and FtsW, which support cell elongation and division respectively. In , cells lacking all four PBPs with transglycosylase activity (aPBPs) are viable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!