In the present study six assays for the quantification of biofilms formed in 96-well microtiter plates were optimised and evaluated: the crystal violet (CV) assay, the Syto9 assay, the fluorescein diacetate (FDA) assay, the resazurin assay, the XTT assay and the dimethyl methylene blue (DMMB) assay. Pseudomonas aeruginosa, Burkholderia cenocepacia, Staphylococcus aureus, Propionibacterium acnes and Candida albicans were used as test organisms. In general, these assays showed a broad applicability and a high repeatability for most isolates. In addition, the estimated numbers of CFUs present in the biofilms show limited variations between the different assays. Nevertheless, our data show that some assays are less suitable for the quantification of biofilms of particular isolates (e.g. the CV assay for P. aeruginosa).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mimet.2007.11.010 | DOI Listing |
Heliyon
January 2025
Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran.
Background: This study aimed to evaluate the biofilm formation abilities of clinical strains, assess their antibiotic susceptibility patterns, and identify the prevalence of adhesion-associated genes.
Methodology: In this study, a total of 60 strains were collected from urine, pus, wounds, blood, body fluid, and sputum in health centers affiliated with Abadan University of Medical Sciences, Iran. Strains were identified via microbiological methods and polymerase chain reaction (PCR) to target the gene.
Lab Chip
January 2025
Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland.
A novel microfluidic platform was designed to study the cellular architecture of endothelial cells (ECs) in an environment replicating the 3D organization and flow of blood vessels. In particular, the platform was constructed to investigate EC defects in slow-flow venous malformations (VMs) under varying shear stress and flow conditions. The platform featured a standard microtiter plate footprint containing 32 microfluidic units capable of replicating wall shear stress (WSS) in normal veins and enabling precise control of shear stress and flow directionality without the need for complex pumping systems.
View Article and Find Full Text PDFThe meniscus effect in cell culture vessels limits the observable areas with phase contrast microscopy. For meniscus effect compensation in microtiter plates (MTPs), we present a method using an LCD to replace the fixed condenser annulus, which enables adaptive annulus shifting based on image analysis. This approach led to an increase in phase contrast area by a factor of 8.
View Article and Find Full Text PDFVet Res Forum
December 2024
Department of Microbiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Türkiye.
Fungal contamination in drinking water has garnered considerable attention over the past few decades, especially considering the detrimental consequences of pathogenic fungal species on both human and animal health. The formation of biofilms by certain species is a considerable factor contributing to the emergence of severe fungal infections. This research was designed to isolate and identify fungi, particularly those capable of forming biofilms from 150 samples of drinking water sourced from various locations.
View Article and Find Full Text PDFJ Biol Eng
January 2025
Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany.
Background: For process development in mammalian cell cultivations, scale-up approaches are essential. A lot of studies concern the scale transfer between different-sized stirred tank reactors. However, process development usually starts in even smaller cultivation vessels like microtiter plates or shake flasks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!