GT-1 murine neuronal cells exposed to an experimental proteasome inhibitor (EPI) for 24h showed increased cell death via a non-apoptotic mechanism, as assessed by TUNEL and DNA fragmentation assays. Immunofluorescence staining demonstrated that EPI induced reorganization and relocation of non-ubiquinated actin microfilaments and microtubules to the perinuclear region in EPI treated cells. Immunohistochemistry analysis also demonstrated that other non-cytoskeletal proteins became ubiquitinated and/or upregulated including ubiquitin and other stress proteins. Perinuclear-centrosomal accumulation of gamma-tubulin and vimentin, key components of aggresomes, was observed in the EPI treated cells. Biochemical analysis indicated that EPI-induced accumulation of ubiquitinated protein aggregates in GT-1 cells was detergent - and mechanical - disruption resistant, a feature of aggresomes. Similar results were observed in GT-1 cells treated with lactacystin, a prototypical proteasome inhibitor, which is structurally dissimilar to EPI indicating a pharmacologic effect. In conclusion, EPI causes cytoskeletal reorganization and accumulation of diverse ubiquitinated and non-ubiquitinated proteins in the perinuclear region and potentially overloads the endoplasmic reticulum-dependent quality control mechanism. These processes acting alone, or in combination, are hypothesized to affect axonal transport or other aspects of cellular homeostasis and thus, represent events potentially relevant to the development of peripheral neuropathy associated with administration of proteasome inhibitors in nonclinical studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuro.2007.11.003DOI Listing

Publication Analysis

Top Keywords

proteasome inhibitor
12
experimental proteasome
8
neuronal cells
8
perinuclear region
8
epi treated
8
treated cells
8
aggresomes observed
8
gt-1 cells
8
cells
6
epi
6

Similar Publications

The PROTAC selectively degrading BCL-X inhibits the growth of tumors and significantly synergizes with Paclitaxel.

Biochem Pharmacol

December 2024

Zhongshan Hospital Institute of Clinical Science, Shanghai Medical College, Fudan University, Shanghai 200032, China. Electronic address:

B-cell lymphoma extra large (BCL-X) is an important anti-apoptotic protein of BCL-2 family. It is frequently overexpressed in various hematologic and solid tumors, often positively correlated with chemotherapy resistance in tumors. However, the clinical development of the small molecule BCL-X inhibitor ABT-263 has been challenged on account of its on-target and dose-limiting toxicity.

View Article and Find Full Text PDF

E3 ubiquitin ligase ITCH-mediated proteasomal degradation of WBP2 sensitizes breast cancer cells to chemotherapy through restraining AMOTL2/c-JUN axis.

Biochem Pharmacol

December 2024

Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China; Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen 361005, Fujian, China. Electronic address:

Our study had demonstrated that WW domain-binding protein 2 (WBP2) conferred chemoresistance in breast cancer (BC). However, the underlying mechanism remains unclear. Herein, a decreased expression of itchy E3 ubiquitin protein ligase (ITCH) was observed in drug-resistant BC tissues which negatively regulated the expression of WBP2.

View Article and Find Full Text PDF

Liquidambaric acid inhibits cholangiocarcinoma progression by disrupting the STAMBPL1/NRF2 positive feedback loop.

Phytomedicine

December 2024

The Department of Hepato-biliary-pancreatic Surgery, The Institute of Hepatobiliary and Pancreatic Diseases, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, PR China; Changzhou Medical Center, Nanjing Medical University, Changzhou, PR China. Electronic address:

Background: Abnormal antioxidant capacity in cancer cells is intimately linked to tumor aggressiveness. Modulating oxidative stress status and inhibiting ferroptosis represents a novel anticancer therapeutic strategy. STAM Binding Protein Like 1 (STAMBPL1), a deubiquitinase, is implicated in various malignancies, yet its function in inhibiting ferroptosis and therapeutic potential for cholangiocarcinoma (CCA) remains unexplored.

View Article and Find Full Text PDF

Shikonin induces the apoptosis and pyroptosis of EGFR-T790M-mutant drug-resistant non-small cell lung cancer cells via the degradation of cyclooxygenase-2.

Eur J Med Res

December 2024

Department of Immunology and Microbiology, College of Life Science and Technology, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, No. 601 Huangpu Avenue West, Tianhe, Guangzhou, 510632, China.

Background: The T790M mutation in the epidermal growth factor receptor (EGFR) gene is the primary cause of resistance to EGFR-tyrosine kinase inhibitor (TKI) therapy in non-small cell lung cancer (NSCLC) patients. Previous research demonstrated that certain traditional Chinese medicine (TCM) monomers exhibit anti-tumor effects against various malignancies. This study aims to investigate the potentials of shikonin screened from a TCM monomer library containing 1060 monomers in killing EGFR-T790M drug-resistant NSCLC cells and elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Background: Bortezomib (BTZ), a selective 26 S proteasome inhibitor, is clinically useful in treating multiple myeloma and mantle cell lymphoma. BTZ exerts its antitumor effect by suppressing nuclear factor-B in myeloma cells, promoting endothelial cell apoptosis, and inhibiting angiogenesis. Despite its success, pulmonary complications, such as capillary leak syndrome of the vascular hyperpermeability type, were reported prior to its approval.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!