Glycosylation of cell surface proteins is important in thymocyte maturation. In particular, the level of sialylation of key glycoproteins such as CD45 is believed to play a major role in regulating TCR signaling, adhesion and apoptosis of developing thymocytes. We show here that transgenic expression of human alpha1-2 fucosyltransferase (hFUT1) in mice resulted in a marked shift from sialylation to fucosylation of thymocyte glycoproteins. This was associated with a significant reduction in thymocyte number, an increased rate of apoptosis in double positive and single positive thymocytes, and a maturation arrest at TCR-dependent developmental transitions reminiscent of CD45 deficiency. Indeed, CD45RB dimerization was elevated in hFUT1 thymocytes, consistent with its hyposialylation, and there was a corresponding increase in phosphorylation of the TCR-associated protein Lck. However, contrary to the reduced TCR signaling in CD45 null mice, basal and stimulated TCR signaling was higher in hFUT1 thymocytes than in wild type thymocytes. Our results therefore demonstrate that aberrant expression of a single glycosyltransferase can profoundly affect thymopoiesis, although the relative involvement of CD45-dependent and -independent mechanisms is yet to be determined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molimm.2007.11.006 | DOI Listing |
Transl Cancer Res
December 2024
Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer and one of the leading causes of cancer-related deaths worldwide due to limited treatment options. The tumor microenvironment (TME), which is usually immunosuppressive in HCC, appears to be a decisive factor for response to immunotherapy and strategies aimed at inducing a more inflamed TME hold promise to overcome resistance to immunotherapy. Within the TME, the interplay of various cell types determines whether immunotherapy is successful.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
Background: FOXF2, a member of the transcription factor FOX family proteins, plays a key role in tumorigenesis and tumor aggressiveness. However, the potential molecular mechanism of FOXF2 in esophageal squamous cell carcinoma (ESCC) remains largely unknown. Exploring its role and mechanism in ESCC progression may help identify new diagnostic markers and therapeutic targets.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Oncology, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
Dipeptidase 1 (DPEP1), initially identified as a renal membrane enzyme in mature human kidneys, plays a pivotal role in various cellular processes. It facilitates the exchange of materials and signal transduction across cell membranes, contributing significantly to dipeptide hydrolysis, glucose and lipid metabolism, immune inflammation, and ferroptosis, among other cellular functions. Extensive research has delineated the complex role of DPEP1 in oncogenesis and tumor progression, with its influence being context dependent.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Medical College of Qinghai University, Xining, China.
Background: Chromosome segregation 1 like () overexpression can promote proliferation and migration in cancer. In previous study, we found that CSE1L expression was higher in gastric cancer (GC) tissues compared to normal tissues. However, the biological function and molecular mechanism of CSE1L in GC remains unclear.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Radiation Oncology, The Second Hospital of Lanzhou University, Lanzhou, China.
Background: Within the realm of primary brain tumors, specifically glioblastoma (GBM), presents a notable obstacle due to their unfavorable prognosis and differing median survival rates contingent upon tumor grade and subtype. Despite a plethora of research connecting cardiotrophin-1 (CTF1) modifications to a range of illnesses, its correlation with glioma remains uncertain. This study investigated the clinical value of CTF1 in glioma and its potential as a biomarker of the disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!