Cardiac stem cell therapy remains hampered by acute donor cell death posttransplantation and the lack of reliable methods for tracking cell survival in vivo. We hypothesize that cells transfected with inducible vascular endothelial growth factor 165 (VEGF(165)) can improve their survival as monitored by novel molecular imaging techniques. Mouse embryonic stem (ES) cells were transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF(165) and renilla luciferase (Rluc). Addition of doxycycline induced Bi-Tet expression of VEGF(165) and Rluc significantly compared to baseline (p<0.05). Expression of VEGF(165) enhanced ES cell proliferation and inhibited apoptosis as determined by Annexin-V staining. For noninvasive imaging, ES cells were transduced with a double fusion (DF) reporter gene consisting of firefly luciferase and enhanced green fluorescence protein (Fluc-eGFP). There was a robust correlation between cell number and Fluc activity (R(2)=0.99). Analysis by immunostaining, histology, and RT-PCR confirmed that expression of Bi-Tet and DF systems did not affect ES cell self-renewal or pluripotency. ES cells were differentiated into beating embryoid bodies expressing cardiac markers such as troponin, Nkx2.5, and beta-MHC. Afterward, 5 x 10(5) cells obtained from these beating embryoid bodies or saline were injected into the myocardium of SV129 mice (n=36) following ligation of the left anterior descending (LAD) artery. Bioluminescence imaging (BLI) and echocardiography showed that VEGF(165) induction led to significant improvements in both transplanted cell survival and cardiac function (p<0.05). This is the first study to demonstrate imaging of embryonic stem cell-mediated gene therapy targeting cardiovascular disease. With further validation, this platform may have broad applications for current basic research and further clinical studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3657514 | PMC |
http://dx.doi.org/10.1089/clo.2007.0032 | DOI Listing |
Acta Pharmacol Sin
January 2025
Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.
Nat Cell Biol
January 2025
Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
The nuclear matrix, a proteinaceous gel composed of proteins and RNA, is an important nuclear structure that supports chromatin architecture, but its role in human pluripotent stem cells (hPSCs) has not been described. Here we show that by disrupting heterogeneous nuclear ribonucleoprotein U (HNRNPU) or the nuclear matrix protein, Matrin-3, primed hPSCs adopted features of the naive pluripotent state, including morphology and upregulation of naive-specific marker genes. We demonstrate that HNRNPU depletion leads to increased chromatin accessibility, reduced DNA contacts and increased nuclear size.
View Article and Find Full Text PDFNeurotherapeutics
January 2025
School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK; Leibniz-Institut für Polymerforschung Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany. Electronic address:
Replacing cells lost during the progression of neurodegenerative disorders holds potential as a therapeutic strategy. Unfortunately, the majority of cells die post-transplantation, which creates logistical and biological challenges for cell therapy approaches. The cause of cell death is likely to be multifactorial in nature but has previously been correlated with hypoxia in the graft core.
View Article and Find Full Text PDFStem Cell Res
January 2025
Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research Transformation in Tropical Environment of Hainan Province, Department of Biochemistry and Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan 571199, China; Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 571101, China; Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 571101, China; National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" by the Ministry of Science and Technology of China, Haikou, Hainan 571101, China; Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 571101, China. Electronic address:
KDM5D is a gene implicated in spermatogenic failure and sex-related differences in colon cancer progression, though its role in spermatogenesis remains unclear. We successfully generated a KDM5D knockout human embryonic stem cells using CRISPR/Cas9 technology. This knockout cell line provides a valuable model for studying KDM5D's function in spermatogenesis and its influence on sex differences in various diseases.
View Article and Find Full Text PDFPopulations of very small embryonic-like stem cells (VSELs) (CD34+lin-CD45- and CD133+lin-CD45-), circulating in the peripheral blood of adults in small numbers, have been identified in several human tissues and together with the populations of hematopoietic stem cells (HSCs) (CD34+lin-CD45+) and CD133+lin-CD45+constitute a pool of cells with self-renewal and pluripotent stem cell characteristics. Using advanced cell staining and sorting strategies, we isolated populations of VSELs and HSCs for bulk RNA-Seq analysis to compare the transcriptomic profiles of both cell populations. Libraries were prepared from an extremely small number of cells; however, their good quality was preserved, and they met the criteria for sequencing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!