The LaFe(13)-(x)Si(x) (1.0 < or = x < or = 5.0) series is studied experimentally and theoretically to gain possible understanding for the relationships among geometrical structure, chemical composition, magnetic behavior, and physical properties as related to the magnetocaloric effect in these compounds. As the Si concentration increases, LaFe(13)-(x)Si(x) exhibits a structural transformation from the cubic NaZn(13) structure type to a tetragonal derivative due primarily to preferential ordering of Fe and Si atoms. At room temperature, LaFe(13)-(x)Si(x) crystallize in the cubic structure for the range 1 < or = x < or = 2.6 and in the tetragonal for 3.2 < or = x < or = 5. In the range 2.6 < or = x < or = 3.2, it shows a two-phase mixture. Temperature-dependent single-crystal X-ray diffraction experiments near the corresponding Curie temperatures were performed on the room-temperature cubic phases to examine the origin of the large isothermal magnetic entropy changes. A thorough statistical and structural analysis of the data indicates that the noncentrosymmetric F43c space group provides a more adequate atomic arrangement than the centrosymmetric Fm3c space group. This change in space group leads to divergence for specific sets of Fe-Fe distances below the Curie temperature that arises from tilting of Fe-centered [Fe(12)-(x)Si(x)] icosahedra. The noncentrosymmetric space group also agrees with the predominance of icosahedral clusters lacking local inversion symmetry. From extended Hückel and tight-binding linear muffin-tin orbital (TB-LMTO) electronic structure calculations on various model structures, the F43c model is more energetically favorable than the Fm3c model. Extended Hückel calculations on various icosahedral [Fe(12)-(n)Si(n)] (n = 1-5) clusters and TB-LMTO calculations on "LaFe(13)," LaFe(11)Si(2), and LaFe(9)Si(4) have also been carried out to study the effects of a main group element (Si) on stabilizing the cubic NaZn(13)-type structure, influencing the transformation between cubic and tetragonal symmetries, and to study relationships among their chemical bonding and magnetic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic701311b | DOI Listing |
Recent calls for Doctor of Physical Therapy (DPT) education to cultivate the affective domain or "habits of the heart" have highlighted a gap in curricula, where cognitive and psychomotor learning domains are often the focus. Balint groups, traditionally used in medical education, offer a potential method for addressing this gap. These small peer discussion groups provide a space for students to reflect on the emotional and interpersonal complexities of providing patient care through practicing perspective-taking.
View Article and Find Full Text PDFClin Exp Rheumatol
January 2025
UMass Chan Medical School and UMass Memorial Medical Center, Boston, MA, USA.
Objectives: To determine the efficacy, safety, and tolerability of intraarticular (IA) lorecivivint (LOR) in the treatment of knee osteoarthritis (OA).
Methods: Patients with American College of Rheumatology criteria-defined knee OA, Kellgren-Lawrence (KL) grades 2-3, and medial Joint Space Width (JSW) by radiograph between 1.5 and 4 mm in the target knee were enrolled in this phase 3, 56-week, multicentre, double-blind, placebo-controlled study.
Dalton Trans
January 2025
Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pune - 411008, India.
Organic-inorganic hybrid ferroelectric compounds of the halobismuthate family have emerged as a focal point of research owing to their reduced toxicity and distinctive optical characteristics. This study presents a novel ammonium hybrid perovskite, [BPMBDMA]·[Bi2Br9], which exhibits both ferro- and piezoelectric properties and crystallizes in the polar noncentrosymmetric 2 space group. The nonlinear optical (NLO) activity of [BPMBDMA]·[Bi2Br9] was corroborated through second harmonic generation measurements evidencing its noncentrosymmetric structure, which was further substantiated by piezoresponse force microscopy analyses.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France.
Tetramethylammonium (TMA) is a ubiquitous cationic motif in biochemistry, found in the charged choline headgroup of membrane phospholipids and in tri-methylated lysine residues, which modulates histone-DNA interactions and impacts epigenetic mechanisms. TMA interactions with anionic species, particularly carboxylate groups of amino acid residues and extracellular sugars, are of substantial biological relevance, as these interactions mediate a wide range of cellular processes. This study investigates the molecular interactions between TMA and acetate, representing carboxylate-containing groups, using neutron scattering experiments complemented by force fields and molecular dynamics (MD) simulations.
View Article and Find Full Text PDFBiomacromolecules
January 2025
BioComposites Centre, Bangor University, Bangor LL57 2UW, U.K.
Wood modification using low molecular weight thermosetting resins improves the biological durability and dimensional stability of wood while avoiding increasingly regulated biocides. During the modification process, resin monomers diffuse from the cell lumen to the cell wall, occupying micropore spaces before curing at 150 °C. This study investigated the mechanism of cell wall diffusion at multiple scales, comparing two test groups where diffusion was either facilitated or restricted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!