The structure of human serum low density lipoprotein (LDL) was investigated by perturbing the LDL structure with sodium dodecyl sulfate (SDS). The change in LDL structure induced by the addition of SDS was monitored by sedimentation velocity measurements, ultraviolet difference spectroscopy, fluorescence spectroscopy and proteolytic digestion of apo-LDL with subtilisin BPN' [EC 3.4.21.14]. As the concentration of SDS was increased from 0.1 mg/ml to 3 mg/ml with LDL concentrations between 2.0 mg/ml and 4.4 mg/ml, the sedimentation coefficient of LDL changed in three distinct steps. It was found by chemical analyses that not more than 30% of the total lipid was lost from LDL in the second step, whereas the final step in the change of sedimentation coefficient corresponded to the complete removal of apo-LDL from the constituent lipids of LDL. The ultraviolet difference spectrum between the native and SDS-treated LDL and the quenching of LDL fluorescence underwent about 80% of the total change while the SDS concentration was only sufficient to cause the second of the three step changes in sedimentation coefficient. SDS-polyacrylamide gel electrophoresis of apo-LDL treated with subtilisin BPN' also showed that more than 70% of apo-LDL became susceptible to proteolysis under the same conditions. These results were interpreted as indicating that the solubilization of 20 to 30% of the lipids on the surface of LDL exposed nearly 80% or more of apo-LDL to the solvent. A small portion of apo-LDL was, however, still firmly anchored to the remaining lipid micelle as long as the concentration of SDS was less than that required to cause the final step of the change in sedimentation coefficient.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/oxfordjournals.jbchem.a131113 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!