The rapidly evolving chloroplast matK gene has nucleotide and amino acid substitution rates suggestive of progression toward a pseudogene state. However, molecular evidence has demonstrated that matK is expressed and functional. We explore in this paper the underlying factors behind the mode and tempo of matK evolution that allow this protein coding gene to accommodate such elevated rates of substitution and yet maintain functionality. Conservative amino acid replacement may reconcile the fast evolutionary rate in matK with conservation in protein function. Based on this premise, we have examined putative amino acid sequences for MATK from across green plants to determine constraint on this protein as indicated by variation in composition of amino acid side chain category. Amino acids in the MATK ORF were divided into six categories based on chemical properties of their side chains: nonpolar, uncharged (pH 7), basic, acidic, aromatic, and "special" (amino acids that specifically affect protein structure, i.e., proline, glycine, and cysteine). The amount of standard deviation (SD) in side chain composition was used as a measure of variation and constraint, where a low SD implied high evolutionary constraint and a high SD implied low constraint. Further, we used secondary structure prediction to evaluate if conservation observed in side chain composition was reflected in stable predicted structure. The results of this study demonstrate evolutionary constraint on MATK, identify three regions of functional importance, show highly conserved secondary structure, and support the putative function of MATK as a group II intron maturase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00239-007-9060-6 | DOI Listing |
Background And Aim: The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
Tumor microenvironment activatable therapeutic agents and their effective tumor accumulation are significant for selective tumor treatment. Herein, we provide an unadulterated nanomaterial combining the above advantages. We synthesize a perylene diimide (PDI) molecule substituted by glutamic acid (Glu), which can self-assemble into small spherical nanoparticles (PDI-SG) in aqueous solution.
View Article and Find Full Text PDFChemSusChem
January 2025
TU Dortmund University: Technische Universitat Dortmund, Biochemical and Chemical Engineering, Emil-Figge-Straße 66, 44227, Dortmund, GERMANY.
Platform chemicals from renewable resources with broad applications are highly desirable, particularly for replacing fossil-based monomers. Bifunctional aliphatic ester-aldehydes, accessible via regioselective hydroformylation of unsaturated oleochemicals, can be converted into linear ω-amino/ω-hydroxy esters and dicarboxylic acids-key building blocks for biobased aliphatic polycondensates. However, their success hinges on efficient, economically viable production, with catalyst recycling being critical.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France.
Tetramethylammonium (TMA) is a ubiquitous cationic motif in biochemistry, found in the charged choline headgroup of membrane phospholipids and in tri-methylated lysine residues, which modulates histone-DNA interactions and impacts epigenetic mechanisms. TMA interactions with anionic species, particularly carboxylate groups of amino acid residues and extracellular sugars, are of substantial biological relevance, as these interactions mediate a wide range of cellular processes. This study investigates the molecular interactions between TMA and acetate, representing carboxylate-containing groups, using neutron scattering experiments complemented by force fields and molecular dynamics (MD) simulations.
View Article and Find Full Text PDFCurr Mol Pharmacol
January 2025
Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco A.C., 44270, Guadalajara, Jalisco, Mexico.
Background: Androgen receptor mutations, particularly T877A and W741L, promote prostate cancer (PCa). The main therapies against PCa use androgen receptor (AR) antagonists, including Bicalutamide; but these drugs lose their effectiveness over time. Chrysin is a flavonoid with several biological activities, including antitumoral properties; however, its potential as an antiandrogen must be explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!