A recombinant active-site mutant of hydantoin racemase (C76A) from Sinorhizobium meliloti CECT 4114 (SmeHyuA) has been crystallized in the presence and absence of the substrate D,L-5-isopropyl hydantoin. Crystals of the SmeHyuA mutant suitable for data collection and structure determination were grown using the counter-diffusion method. X-ray data were collected to resolutions of 2.17 and 1.85 A for the free and bound enzymes, respectively. Both crystals belong to space group R3 and contain two molecules of SmeHyuA per asymmetric unit. The crystals of the free and complexed SmeHyuA have unit-cell parameters a = b = 85.43, c = 152.37 A and a = b = 85.69, c = 154.38 A, crystal volumes per protein weight (V(M)) of 1.94 and 1.98 A3 Da(-1) and solvent contents of 36.7 and 37.9%, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2374001PMC
http://dx.doi.org/10.1107/S1744309107066122DOI Listing

Publication Analysis

Top Keywords

active-site mutant
8
mutant hydantoin
8
hydantoin racemase
8
sinorhizobium meliloti
8
crystallization preliminary
4
preliminary crystallographic
4
crystallographic studies
4
studies active-site
4
racemase sinorhizobium
4
meliloti cect4114
4

Similar Publications

Its own architect: Flipping cardiolipin synthase.

Sci Adv

January 2025

Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.

Article Synopsis
  • Current understanding posits that lipid asymmetry in cell membranes is actively kept and not essential for survival, yet the inner membrane (IM) shows notable asymmetry.
  • Researchers created a specific mutant lacking phosphatidylethanolamine (PE) that relies on cardiolipin (CL) for its IM viability, uncovering how the distribution of CL is regulated in the membrane.
  • The study reveals that the enzyme ClsA adapts its structure in response to varying levels of PE, highlighting a potentially novel mechanism for sustaining lipid asymmetry in membranes without the need for specialized flippase proteins.
View Article and Find Full Text PDF

Background: Presenilin1 (PS1)/γ-secretase cleaves within the transmembrane domain of numerous receptor substrates. Mutations in PS1 have implications on the catalytic subunit of γ-secretase decreasing its activity and becoming a potential causative factor for Familial Alzheimer's Disease (FAD). This work studies the role of PS1/γ-secretase on the processing, angiogenic signaling, and functions of VEGFR2 and the effects of PS1 FAD mutants on the γ-secretase-mediated epsilon cleavage of VEGFR2.

View Article and Find Full Text PDF

Paralogues of the bifunctional nuclease, Ribonuclease J (RNase J) demonstrate varied catalytic efficiencies despite extensive sequence and structural similarity. Of the two S. aureus RNase J paralogues, RNase J1 is substantially more active than RNase J2.

View Article and Find Full Text PDF

The pathogenic G361A variant of CRAF, associated with increased intrinsic kinase activity in Noonan syndrome (NS), remains poorly understood in terms of its molecular and structural impact on kinase activity. To elucidate the mechanistic implications of the glycine to alanine substitution at residue 361 in CRAF, we employed molecular dynamics simulations. Our findings reveal that this mutation predominantly affects the ATP binding pocket and critical intermolecular interactions within the active cleft that favors the phosphate transfer reaction.

View Article and Find Full Text PDF

Dual-domain superoxide dismutase: In silico prediction directed combinatorial mutation for enhanced robustness and catalytic efficiency.

Int J Biol Macromol

December 2024

Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China. Electronic address:

The robustness and catalytic activity of superoxide dismutase (SOD) are still the main factors limiting their application in industrial fields. This study aims to further improve the properties of a natural thermophilic iron/manganese dual-domain SOD (Fe/Mn-SODA fused with N-terminal polypeptide) from Geobacillus thermodenitrificans NG80-2 (GtSOD) by modifying its each domain using in-depth in silico prediction analysis as well as protein engineering. First, computational analysis of the N-terminal domain and GtSODA domain was respectively performed by using homologous sequence alignment and virtual mutagenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!