AI Article Synopsis

  • Extracellular calcium (Ca) levels significantly influence parathyroid hormone (PTH) mRNA levels in bovine parathyroid organoid cultures, where increased Ca concentrations reduce PTH mRNA to 20-30% of its basal levels within 16 hours.
  • Reducing Ca levels restores PTH mRNA over a 24-hour period, confirming that calcium-sensing receptors play a key role in this process, along with the calcimimetic R-568.
  • The study reveals that the decline in PTH mRNA in response to high Ca requires active gene transcription and is facilitated by increased cytosolic Ca, not involving MAP kinase, phospholipase D, or cyclic AMP pathways.

Article Abstract

Extracellular Ca reduces parathyroid hormone (PTH) levels through several mechanisms, but many details of the intracellular steps involved have been difficult to elucidate because of the lack of a suitable parathyroid cell model. The present studies utilized our Ca-responsive bovine parathyroid organoid culture system (pseudoglands) to examine PTH mRNA in intact parathyroid cells. Increasing medium calcium from 0.4 to 3.0 mM reduced PTH mRNA to 20-30% of basal by 16 h. Reducing medium Ca from 3.0 to 0.4 mM restored PTH mRNA levels over a 24-h period. PTH mRNA was also reduced by the calcimimetic R-568, confirming the role of the calcium-sensing receptor. PTH decay rates were determined by placing pseudoglands in either 0.4 or 3.0 mM Ca for 2 h and then blocking gene transcription. PTH mRNA remained stable for at least 24 h in pseudoglands incubated in 0.4 mM Ca, but fell gradually by 62% in the presence of 3.0 mM Ca. Blocking transcription prior to the addition of high-Ca medium dramatically blunted the Ca-induced degradation of PTH mRNA, indicating that acceleration of PTH mRNA decay by Ca requires gene transcription. Pharmacologic investigation of the signaling pathways involved indicated that the Ca-induced reduction of PTH mRNA did not involve MAP kinase, phospholipase D, or cyclic AMP. However, increasing cytosolic Ca with thapsigargin or the Ca ionophore A23187 decreased PTH mRNA levels. In summary, Ca-mediated destabilization of PTH mRNA requires gene transcription and involves increases in cytosolic Ca.

Download full-text PDF

Source
http://dx.doi.org/10.1677/JME-07-0085DOI Listing

Publication Analysis

Top Keywords

pth mrna
40
gene transcription
16
pth
12
mrna
11
parathyroid hormone
8
calcimimetic r-568
8
parathyroid cells
8
mrna levels
8
requires gene
8
parathyroid
5

Similar Publications

Renal osteodystrophy (ROD) leads to increased fractures, potentially due to underlying low bone turnover in chronic kidney disease (CKD). We hypothesized that indoxyl sulfate (IS), a circulating toxin elevated in CKD and a ligand for the aryl hydrocarbon receptor (AhR), may target the osteocytes leading to bone cell uncoupling in ROD. The IDG-SW3 osteocytes were cultured for 14 days (early) and 35 days (mature osteocytes) and incubated with 500 μM of IS after dose finding studies to confirm AhR activation.

View Article and Find Full Text PDF

Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is highly prevalent with major risk of progression to Metabolic Dysfunction-Associated Steatohepatitis (MASH) and Hepatocellular Carcinoma (HCC). Recently, osteoporosis and bone fracture have emerged as sexually-dimorphic comorbidities of MASLD yet the mechanisms of this bone loss are unknown. Herein, we address these knowledge gaps using DIAMOND mice which develop MASLD, MASH, and HCC via Western diet exposure.

View Article and Find Full Text PDF
Article Synopsis
  • Aberrant epigenetic changes, specifically in DNA methylation and non-coding RNAs, play a significant role in the development of parathyroid tumors, particularly concerning the genes RASSF1A and APC, which are often downregulated in cancers.
  • In a study of parathyroid adenomas and carcinomas, RASSF1A promoter methylation was found in approximately 90% of adenomas and was inversely related to tumor size; however, APC methylation appeared less frequently.
  • The research concluded that the methylation of RASSF1A and APC is a common feature in parathyroid tumors, with the activity of DNA methyltransferases affecting
View Article and Find Full Text PDF

Distinct expression profile reveals glia involvement in the trigeminal system attributing to post-traumatic headache.

J Headache Pain

November 2024

Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.

Background: Post-traumatic headache (PTH) is a common comorbid symptom affecting at least one-third of patients with mild traumatic brain injury (mTBI). While neuroinflammation is known to contribute to the development of PTH, the cellular mechanisms in the trigeminal system crucial for understanding the pathogenesis of PTH remain unclear.

Methods: A non-invasive repetitive mTBI (4 times with a 24-h interval) was induced in male mice and effect of mTBI was tested on either bregma or pre-bregma position on the head.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!