Nonmuscle myosin II moves in new directions.

J Cell Sci

Laboratory of Molecular Cardiology, Genetics and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.

Published: January 2008

For many years, analyses of the role of the actomyosin cytoskeleton in many basic cellular processes have centered on actin. Increasingly, however, a number of investigators are examining proteins that are proximal to actin; in particular, nonmuscle myosin II (NMII). Recent experiments have increased our understanding of the role of NMII in three related cellular activities: generation of cell polarity, cell migration and cell-cell adhesion. Progress has been particularly promising thanks to the use of new microscopic, genetic and biochemical techniques. In mammalian systems, generation of transgenic mice and the introduction of specific siRNAs have been useful in deciphering the role of the three different isoforms of NMII: NMIIA, NMIIB and NMIIC. Studies in Drosophila and Aplysia, which are informative model systems for investigating the function of NMII, have also shed light on NMII. Recent work examines the contractile and structural roles that NMII plays at cell-cell boundaries, and both its contractile and actin-crosslinking roles in cell migration. In addition, NMII might also function as a scaffold molecule, anchoring signaling molecules, such as kinases and Rho GTPase guanine nucleotide exchange factors.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.007112DOI Listing

Publication Analysis

Top Keywords

nonmuscle myosin
8
cell migration
8
nmii
7
myosin moves
4
moves directions
4
directions years
4
years analyses
4
analyses role
4
role actomyosin
4
actomyosin cytoskeleton
4

Similar Publications

Myosin Light Chains in the Progression of Cancer.

Cells

December 2024

Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.

The myosin light chains (MLCs) of non-muscle myosin II are known to regulate cellular architecture and generate cellular forces; they also have an increasingly emerging role in the progression of cancer. The phosphorylation state of the myosin light chains controls the activity of myosins that are implicated in invasion and proliferation. In cancers, when proliferation is greatly increased, cytokinesis relies on phosphorylated light chains to activate the contractile forces used to separate the cells.

View Article and Find Full Text PDF

Background: Myosin heavy chain 9-related diseases (MYH9-RDs) are rare autosomal dominant platelet disorders characterized by macrothrombocytopenia and leukocyte inclusion bodies. They can manifest with nonhematological complications, including deafness, nephropathy, or cataracts. Due to its rarity and its similar clinical presentation with immune thrombocytopenia (ITP), MYH9-RD is often misdiagnosed as ITP, leading to inappropriate treatment and delayed management of complications.

View Article and Find Full Text PDF

Amoeboid cells undergo durotaxis with soft end polarized NMIIA.

Elife

December 2024

Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.

Cell migration towards stiff substrates has been coined as durotaxis and implicated in development, wound healing, and cancer, where complex interplays between immune and non-immune cells are present. Compared to the emerging mechanisms underlying the strongly adhesive mesenchymal durotaxis, little is known about whether immune cells - migrating in amoeboid mode - could follow mechanical cues. Here, we develop an imaging-based confined migration device with a stiffness gradient.

View Article and Find Full Text PDF

Axons are ultrathin membrane cables that are specialized for the conduction of action potentials. Although their diameter is variable along their length, how their morphology is determined is unclear. Here, we demonstrate that unmyelinated axons of the mouse central nervous system have nonsynaptic, nanoscopic varicosities ~200 nm in diameter repeatedly along their length interspersed with a thin cable ~60 nm in diameter like pearls-on-a-string.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!