In humans, two glucocorticoid receptor (GR) splice variants exist: GRalpha and GRbeta, which are identical between amino acids 1-727 and then diverge. Whereas GRalpha (the canonical GR) acts as a ligand-activated transcription factor, GRbeta does not bind traditional glucocorticoid agonists, lacks GRalpha's transactivational activity, and acts as a dominant-negative inhibitor of GRalpha. It has been suggested that this receptor isoform is involved in the induction of glucocorticoid resistance in asthma patients. Unfortunately, a GR beta-isoform has been detected in only humans, and therefore, an animal model for studies on this isoform is lacking. In the present study, we demonstrate that in zebrafish a GR isoform exists that diverges from the canonical zebrafish GR at the same position as human GRbeta from human GRalpha. The zebrafish GR beta-isoform acts as a dominant-negative inhibitor in reporter assays, and the extent of inhibition and the effective GRalpha/GRbeta ratio is similar to studies performed with the human GR isoforms. In addition, the subcellular localization of zebrafish GRbeta is similar to its human equivalent. Finally, expression levels of GRalpha and GRbeta were determined in adult zebrafish tissues and at several developmental stages. Both receptor isoforms were detected throughout the body, and GRbeta mRNA levels were relatively low compared with GRalpha mRNA levels, as in humans. Thus, for the first time, a GR beta-isoform has been identified in a nonhuman animal species, shedding new light on the relevance of this GR splice variant and providing a versatile animal model for studies on the GR system.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2007-1364DOI Listing

Publication Analysis

Top Keywords

glucocorticoid receptor
8
gralpha grbeta
8
acts dominant-negative
8
dominant-negative inhibitor
8
animal model
8
model studies
8
grbeta human
8
mrna levels
8
zebrafish
6
gralpha
6

Similar Publications

Obesity due to excessive body fat accumulation remains a global problem. Patients with obesity have high cortisol levels, and its dysregulation is caused by increased 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) levels. The effects and mechanism of J2H-1702, an 11β-HSD1 inhibitor, on nonalcoholic steatohepatitis (NASH) were explored.

View Article and Find Full Text PDF

Background: Corticosteroid receptors, including mineralocorticoid receptor (MR) and glucocorticoid receptor (GR), play important roles in inflammatory pain in the dorsal root ganglion (DRG). Although it is widely known that activating the GR reduces inflammatory pain, it has recently been shown that MR activation contributes to pain and neuronal excitability in rodent studies. Moreover, little is known about the translation of this work to humans, or the mechanisms through which corticosteroid receptors regulate inflammatory pain.

View Article and Find Full Text PDF

Screening potential diagnostic biomarkers for PLA2R‑associated idiopathic membranous nephropathy by WGCNA analysis and LASSO algorithm.

Ren Fail

December 2025

Department of Nephrology, Xiamen Key Laboratory of Precision Diagnosis and Treatment of Chronic Kidney Disease, The Fifth Hospital of Xiamen, Xiamen, Fujian, China.

Adult nephrotic syndrome is primarily caused by membranous nephropathy (MN), with idiopathic membranous nephropathy (IMN) being a prominent subtype. The onset of phospholipase A2 receptor (PLA2R1)-associated IMN is critically linked to M-type PLA2R1 exposure, yet the mechanism underlying glomerular injury remains unclear. In this study, membranous nephropathy datasets (GSE115857, GSE200828) were retrieved from GEO.

View Article and Find Full Text PDF

The root of asthma can be linked to early life, with prenatal environments influencing risk. We investigate the effects of maternal asthma on the offspring's lungs during fetal and adult life. Adult offspring of asthmatic mothers show an increase in lung group 2 innate lymphoid cell (ILC2) number and function with allergen-induced lung inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!