Hepatoblasts have the potential to differentiate into both hepatocytes and biliary epithelial cells through a differentiation program that has not been fully elucidated. With the aim to better define the mechanism of differentiation of hepatoblasts, we isolated hepatoblasts and established new culture systems. We isolated hepatoblasts from E12.5 fetal mouse liver by using E-cadherin. The E-cadherin+ cells expressed alpha-fetoprotein (AFP) and albumin (Alb) but not cytokeratin 19 (CK19). Transplantation of the E-cadherin+ cells into mice that had been subjected to liver injury or biliary epithelial injury led to differentiation of the cells into hepatocytes or biliary epithelial cells, respectively. In a low-cell-density culture system in the absence of additional growth factors, E-cadherin+ cells formed colonies of various sizes, largely comprising Alb-positive cells. Supplementation of the culture medium with hepatocyte growth factor and epidermal growth factor promoted proliferation of the cells. Thus the low-cell-density culture system should be useful to identify inductive factors that regulate the proliferation and differentiation of hepatoblasts. In a high-cell-density system in the presence of oncostatin M+dexamethasone, E14.5, but not E12.5, E-cadherin+ cells differentiated into mature hepatocytes, suggesting that unidentified factors are involved in hepatic maturation. Culture of E-cadherin+ cells derived from E12.5 or E14.5 liver under high-cell-density conditions should allow elucidation of the mechanism of hepatic differentiation in greater detail. These new culture systems should be of use to identify growth factors that induce hepatoblasts to proliferate or differentiate into hepatocytes and biliary epithelial cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpgi.00412.2007 | DOI Listing |
Invasive Lobular Carcinoma (ILC), a distinct subtype of breast cancer is hallmarked by E-Cadherin loss, slow proliferation, and strong hormone receptor positivity. ILC faces significant challenges in clinical management due to advanced stage at diagnosis, late recurrence, and development of resistance to endocrine therapy - a cornerstone of ILC treatment. To elucidate the mechanisms underlying endocrine resistance in ILC, ILC cell lines (MDA-MB-134-VI, SUM44PE) were generated to be resistant to tamoxifen, a selective estrogen receptor modulator.
View Article and Find Full Text PDFOncol Res
January 2025
Department of Urology, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China.
Background: Clear cell renal carcinoma (ccRCC), the leading histological subtype of RCC, lacks any targeted therapy options. Although some studies have shown that early growth response factor 1 (EGR1) has a significant role in cancer development and progression, its role and underlying mechanisms in ccRCC remain poorly understood.
Methods: The Cancer Genome Atlas (TCGA) database was utilized to examine the expression of EGR1 in ccRCC.
Biomol Biomed
January 2025
Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Translational Research Team, Surginex Co., Republic of Korea; Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
HEK293T cells are extensively utilized for therapeutic protein production due to their human origin, which enables accurate post-translational modifications. This study aimed to enhance membrane protein production in HEK293T cells by knocking out the ATF4 gene using CRISPR-Cas9 technology. The ATF4 gene was edited by infecting HEK293T cells with a lentivirus carrying optimized single-guide RNA (ATF4-KO-3) and Cas9 genes.
View Article and Find Full Text PDFEnviron Toxicol
January 2025
Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear.
View Article and Find Full Text PDFMol Cell Endocrinol
January 2025
Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China. Electronic address:
Bisphenol A (BPA), a commonly used plastic additive, is believed to cause obesity. As an environmental endocrine disruptor, BPA is closely associated with the onset and progression of BC. However, the molecular mechanisms underlying the promotion of breast cancer by BPA remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!