The increased susceptibility effects and high signal-to-noise ratio at 7.0 T enable imaging of the brain using the phase of the magnetic resonance signal. This study describes and evaluates a robust method for calculating phase images from gradient-recalled echo (GRE) scans. The GRE scans were acquired at 7.0 T using an eight-channel receive coil at spatial resolutions up to 0.195 x 0.260 x 2.00 mm. The entire 7.0 T protocol took less than 10 min. Data were acquired from forty-seven subjects including clinical patients with multiple sclerosis (MS) or brain tumors. The phase images were post-processed using a fully automated phase unwrapping algorithm that combined the data from the different channels. The technique was used to create the first phase images of MS patients at any field strength and the first phase images of brain tumor patients above 1.5 T. The clinical images showed novel contrast in MS plaques and depicted microhemorrhages and abnormal vasculature in brain tumors with unsurpassed resolution and contrast.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2377156PMC
http://dx.doi.org/10.1016/j.neuroimage.2007.10.037DOI Listing

Publication Analysis

Top Keywords

phase images
20
robust method
8
images brain
8
gre scans
8
brain tumors
8
phase
7
images
6
brain
5
development robust
4
method generating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!