The objective of this in vitro study was to use a mouse embryonic stem (mES) cell model to better understand pesticide injury that may adversely affect early pregnancy and to evaluate an antioxidant intervention. Undifferentiated D3 mES cells were incubated 24h with control, reference dose (RfD), no observed effect level (NOEL), or lowest observed effect level (LOEL) of paraquat, a commonly used, toxic agricultural herbicide. Pesticide effects were evaluated at 0 and 24h using assays for cell proliferation, total reactive oxygen species (ROS), viability, and alkaline phosphatase activity. Compared to 0 h, cell proliferation increased significantly in the 24h control treatment and was stalled in all paraquat dilutions tested. ROS production and percent necrotic and apoptotic cells were significantly increased at all paraquat concentrations examined. Alkaline phosphatase activity suggested that cells remained undifferentiated during the study period. Experiments with ascorbic acid suggested that pesticide effects on cell viability and ROS production were minimized by the recommended daily allowance (RDA) of vitamin C. Data suggest pesticide-induced injury can occur very early in development and at concentrations predicted without health consequences. Mouse ES cells may provide a useful in vitro model for rapidly screening developmental toxicants and protective interventions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2007.11.008 | DOI Listing |
J Transl Med
January 2025
Department of Anatomy & Embryology, Leiden University Medical Center, P.O. Box 9600, Postal Zone: S-1-P, 2300 RC, Leiden, The Netherlands.
Background: Prenatal development of autonomic innervation of sinus venosus-related structures might be related to atrial arrhythmias later in life. Most of the pioneering studies providing embryological background are conducted in animal models. To date, a detailed comparison with the human cardiac autonomic nervous system (cANS) is lacking.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
The compaction of chromatin is a prevalent paradigm in gene repression. Chromatin compaction is commonly thought to repress transcription by restricting chromatin accessibility. However, the spatial organization and dynamics of chromatin compacted by gene-repressing factors are unknown.
View Article and Find Full Text PDFNat Cardiovasc Res
January 2025
Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education; National Key Laboratory of Frigid Zone Cardiovascular Diseases), Harbin Medical University, Harbin, China.
Targeting the cardiomyocyte cell cycle is a promising strategy for heart repair following injury. Here, we identify a cardiac-regeneration-associated PIWI-interacting RNA (CRAPIR) as a regulator of cardiomyocyte proliferation. Genetic ablation or antagomir-mediated knockdown of CRAPIR in mice impairs cardiomyocyte proliferation and reduces heart regenerative potential.
View Article and Find Full Text PDFLife Sci Alliance
March 2025
https://ror.org/023rffy11 Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
During mouse embryonic development, the embryonic day (E) 5.5 stage represents a crucial period for the formation of the primitive body axis, where the symmetry breaking of cellular states influences the multicellular system. Elucidating the detailed mechanisms of this process necessitates a trans-layered dynamic observation of the embryo and all internal cells.
View Article and Find Full Text PDFDev Biol
January 2025
University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK. Electronic address:
Signals from the lens regulate multiple aspects of eye development, including establishment of eye size, patterning of the presumptive iris and ciliary body in the anterior optic cup and migration and differentiation of neural crest cells. To advance understanding of the molecular mechanism by which the lens regulates eye development, we performed transcriptome profiling of embryonic chicken retinas after lens removal. Genes associated with nervous system development were upregulated in lens-removed eyes, but the presumptive ciliary body and iris region did not adopt a neural retina identity following lens removal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!