We determined the threshold concentration of sarin vapor exposure producing miosis in African green monkeys (Chlorocebus aethiops). Monkeys (n=8) were exposed to a single concentration of sarin (0.069-0.701mg/m3) for 10min. Changes in pupil size were measured from photographs taken before and after the exposure. Sarin EC50 values for miosis were determined to be 0.166mg/m3 when miosis was defined as a 50% reduction in pupil area and 0.469mg/m3 when miosis was defined as a 50% reduction in pupil diameter. Monkeys were also evaluated for behavioral changes from sarin exposure using a serial probe recognition test and performance remained essentially unchanged for all monkeys. None of the concentrations of sarin produced specific clinical signs of toxicity other than miosis. Sarin was regenerated from blood sampled following exposure in a concentration-dependent fashion. Consistent with a predominant inhibition of acetylcholinesterase (AChE), more sarin was consistently found in RBC fractions than in plasma fractions. Further, elimination of regenerated sarin from RBC fractions was slower than from plasma fractions. Blood samples following exposure also showed concentration-dependent inhibition of AChE activity and, to a lesser extent, butyrylcholinesterase activity. At the largest exposure concentration, AChE inhibition was substantial, reducing activity to approximately 40% of baseline. The results characterize sarin exposure concentrations that produce miosis in a large primate species in the absence of other overt signs of toxicity. Further, these results extend previous studies indicating that miosis is a valid early indicator for the detection of sarin vapor exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2007.11.004DOI Listing

Publication Analysis

Top Keywords

vapor exposure
12
sarin
11
exposure
9
exposure sarin
8
african green
8
green monkeys
8
concentration sarin
8
sarin vapor
8
miosis defined
8
defined 50%
8

Similar Publications

Effects of chronic ethanol exposure on dorsal medial striatal neurons receiving convergent inputs from the orbitofrontal cortex and basolateral amygdala.

Neuropharmacology

January 2025

Department of Neuroscience; Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425. Electronic address:

Alcohol use disorder is associated with altered function of cortical-amygdala-striatal circuits such as the orbitofrontal cortex (OFC), basolateral amygdala (BLA) and their connections to the dorsal medial striatum (DMS) shown to be involved in goal-directed actions. Using retrobead tracing, we previously reported enhanced excitability of DMS-projecting OFC neurons in mice following 3-to-7-day withdrawal from chronic intermittent ethanol (CIE) exposure. In the same animals, spiking of DMS-projecting BLA neurons was decreased at 3-days post-withdrawal followed by an increase in firing at 7- and 14-days.

View Article and Find Full Text PDF

Reactive oxygen species (ROS)-mediated anticancer modalities, which disturb the redox balance of cancer cells through multi-pathway simulations, hold great promise for effective cancer management. Among these, cooperative physical and biochemical activation strategies have attracted increasing attention because of their spatiotemporal controllability, low toxicity, and high therapeutic efficacy. Herein, we demonstrate a nanogel complex as a multilevel ROS-producing system by integrating chloroperoxidase (CPO) into gold nanorod (AuNR)-based nanogels (ANGs) for cascade-amplifying photothermal-enzymatic synergistic tumor therapy.

View Article and Find Full Text PDF

Combustion of biomass and waste results in release of corrosive species, such as alkali chlorides and water vapor, which accelerate the corrosion of superheaters in the boiler. To improve our understanding of alkali-induced corrosion, long-term corrosion investigations are needed. This study utilizes a systematic approach based on long-term corrosion studies (up to 8000 h) in a well-controlled laboratory environment to understand the corrosion behavior and protectiveness of oxide scales formed on a FeCr alloy (marginal chromia former) and three overlay weld coating systems (lean FeCrAl, FeCrAl, and Ni-based alloy) in a KCl-rich environment at 600 °C.

View Article and Find Full Text PDF

A Two-in-One Strategy to Simultaneously Boost the Site Density and Turnover Frequency of Fe-N-C Oxygen Reduction Catalysts.

Angew Chem Int Ed Engl

January 2025

Hunan University, Chemistry and Chemical Engineering, Lushan South Road, Yuelu District, 410082, Changsha, CHINA.

Site density and turnover frequency are the two fundamental kinetic descriptors that determine the oxygen reduction activity of iron-nitrogen-carbon (Fe-N-C) catalysts. However, it remains a grand challenge to simultaneously optimize these two parameters in a single Fe-N-C catalyst. Here we show that treating a typical Fe-N-C catalyst with ammonium iodine (NH4I) vapor via a one-step chemical vapor deposition process not only increases the surface area and porosity of the catalyst (and thus enhanced exposure of active sites) via the etching effect of the in-situ released NH3, but also regulates the electronic structure of the Fe-N4 moieties by the iodine dopants incorporated into the carbon matrix.

View Article and Find Full Text PDF

Reduction of by Chlorella-Mediated Antimicrobial Photodynamic Therapy.

J Lasers Med Sci

November 2024

Dentofacial Deformities Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Nowadays, antimicrobial photodynamic therapy (aPDT) has been introduced as one of the minimally invasive methods for disinfection of the surfaces of dental implants. Being derived from seaweed, Chlorella has been used as a photosensitizer in this study. This study aimed to investigate the impacts of aPDT with Chlorella on the rate of reduction of in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!