Differential effects of novel tumour-derived p53 mutations on the transformation of NIH-3T3 cells.

Biol Chem

Division of Medical Biochemistry, Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa.

Published: January 2008

The p53 tumour suppressor gene is frequently mutated in human tumours and different tumour-derived mutations have varying effects on cells. The effect of a novel tumour-derived p53 mutation and two recently described mutations from South African breast cancer patients on the growth rate, colony formation, cell cycle arrest after irradiation and response to chemotherapeutic drugs was investigated. None of the p53 mutations had any significant effect on the inherent growth rate of the cells; however, contact inhibition of growth in two of the mutants was lost. These same two mutants formed colonies in soft agar, whereas the third mutant did not. All three of the mutants failed to show a G(1) cell cycle arrest after exposure to 7 Gy of [(60)Co] radiation, albeit to different degrees. Cells expressing the p53 mutants were either more sensitive to cisplatin and melphalan or more resistant than the untransfected cells, depending on the mutation. However, there was no difference in response to daunorubicin treatment. These results demonstrate that different p53 mutations exert varying biological effects on normal cells, with some altering checkpoint activation more effectively than others. The data also suggest that the nature of the p53 mutation influences the sensitivity to cytostatic drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1515/BC.2008.010DOI Listing

Publication Analysis

Top Keywords

p53 mutations
12
novel tumour-derived
8
tumour-derived p53
8
p53 mutation
8
growth rate
8
cell cycle
8
cycle arrest
8
p53
7
cells
6
mutations
5

Similar Publications

Discovery of Rezatapopt (PC14586), a First-in-Class, Small-Molecule Reactivator of p53 Y220C Mutant in Development.

ACS Med Chem Lett

January 2025

Discovery Biology, PMV Pharmaceuticals, Inc., 400 Alexander Park Drive, Suite 301, Princeton, New Jersey 08540, United States.

p53 is a potent transcription factor that is crucial in regulating cellular responses to stress. Mutations in the gene are found in >50% of human cancers, predominantly occurring in the DNA-binding domain (amino acids 94-292). The Y220C mutation accounts for 1.

View Article and Find Full Text PDF

TP53 germline testing and hereditary cancer: how somatic events and clinical criteria affect variant detection rate.

Genome Med

January 2025

Hereditary Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via 199-203, L'Hospitalet del Llobregat, 08908, Spain.

Background: Germline heterozygous pathogenic variants (PVs) in TP53 cause Li-Fraumeni syndrome (LFS), a condition associated with increased risk of multiple tumor types. As the associated cancer risks were refined over time, clinical criteria also evolved to optimize diagnostic yield. The implementation of multi-gene panel germline testing in different clinical settings has led to the identification of TP53 PV carriers outside the classic LFS-associated cancer phenotypes, leading to a broader cancer phenotypic redefinition and to the renaming of the condition as "heritable TP53-related cancer syndrome" (hTP53rc).

View Article and Find Full Text PDF

Orphan nuclear receptor NR2E3 is a new molecular vulnerability in solid tumors by activating p53.

Cell Death Dis

January 2025

Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield Clinic Health System, Marshfield, WI, USA.

The orphan nuclear receptor NR2E3 has emerged as a potential tumor suppressor, yet its precise mechanisms in tumorigenesis require further investigation. Here, we demonstrate that the full-length protein isoform of NR2E3 instead of its short isoform activates wild-type p53 and is capable of rescuing certain p53 mutations in various cancer cell lines. Importantly, we observe a higher frequency of NR2E3 mutations in three solid tumors compared to the reference population, highlighting its potential significance in tumorigenesis.

View Article and Find Full Text PDF

Here, we have discussed the molecular mechanisms of p53-responsive microRNAs dysregulation in response to genotoxic stress in diffuse large B-cell lymphoma (DLBCL) patients. The role of micro ribonucleic acids (microRNAs) in p53-signaling cellular stress has been studied. MicroRNAs are the small non-coding RNAs, which regulate genes expression at post-transcriptional level.

View Article and Find Full Text PDF

Exploring the various functions of PHD finger protein 20: beyond the unknown.

Toxicol Res

January 2025

Department of Pharmacology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea.

Over the last decade, the functions of PHD finger protein 20 (PHF20) in several signaling processes have been studied, including those of protein kinase B (PKB)-mediated phosphorylation, p53 regulation, muscle differentiation, and histone modification including histone H3 lysine 4 (H3K4) methylation. One PHF20 human mutation lacks the first nonspecific lethal complex of the component that binds to H3K4me2 to facilitate cancer cell survival. In carcinoma cells, PHF20 expression is regulated by PKB; PHF20 becomes phosphorylated when DNA is damaged, thus inhibiting the p53 activity that maintains cancer cell survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!