The function of N-acetyl-L-aspartate (NAA), a predominant substance in the CNS, has not yet been determined. To investigate the possible function of NAA as a lipid precursor [14C]-N-acetyl-L-aspartate (NAA) or [14C]-acetate (AcA) was injected intracerebrally into 8, 15- and 22-day-old rats. These time points were selected because NAA concentration and the activity of the NAA synthetizing enzyme L-aspartate-N-acetyltransferase (ANAT) were low in 8-day-old rats, intermediate in 15-day-old rats and high in 22-day-old rats. During an incubation period of 4 h the radioactive acetyl group of NAA is incorporated into the lipid fraction in amounts of 42.9 to 65.7% of recovered total radioactivity, increasing with the age of the rats. In contrast, radioactivity incorporated from AcA is constant for all three ages. With NAA as precursor only 7.2-9.4% of the recovered total radioactivity is incorporated into the protein fraction. With AcA as precursor 27.0-18.1% of recovered radioactivity is incorporated into the protein fraction, the amounts decreasing with age. Taking into account that in vivo NAA concentration in the brain is much higher than the AcA concentration, NAA is clearly the more efficient precursor for lipid synthesis than AcA. Further, we compared NAA and AcA as lipid precursors by analyzing the radioactivity in single lipid fractions, expressed as normalized specific incorporation or normalized incorporation. The measured differences between NAA and AcA in normalized specific and normalized incorporation of acetyl groups imply that NAA is not simply degraded to AcA before incorporated into lipids. We conclude that NAA is a major source of acetyl groups for lipid synthesis during rat brain development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000112191 | DOI Listing |
Plant Cell Rep
January 2025
Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
Excessive auxin accumulation inhibits protocorm development during germination of Paphiopedilum spicerianum, delaying shoot meristem formation by downregulating boundary genes (CUC1, CUC2, CLV3) and promoting fungal colonization, essential for seedling establishment. Paphiopedilum, possess high horticultural and conservational value. Asymbiotic germination is a common propagation method, but high rates of protocorm developmental arrest hinder seedling establishment.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
Background: Samh (Mesembryanthemum forsskalii, M. cryptanthum) belongs to Aizoaceae family and is found in northern Saudi Arabia, primarily in desert or dry shrubland habitats. M.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Plant Production and Genetic (Biotechnology), Faculty of Agriculture, Jahrom University, Jahrom, Iran.
Background: Geraniums (Pelargonium) are among the most popular flowers worldwide. Viral infection is one of the main problems of the genus Pelargonium, and the production of virus-free mother plants is necessary for large-scale geranium propagation and exchange. Meristem culture and thermotherapy are two effective procedures that have been widely adopted to produce healthy virus-free plant stocks.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
December 2024
Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow, 111123, Russia.
Purpose: Determining the primary origin of non-organ-confined neuroendocrine tumors (NETs) for accurate diagnosis and management. Neuroendocrine tumors are rare neoplasms with diverse clinical behaviors. Determining their primary origin remains challenging in cases of non-organ-confined NETs.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculturein Krakow, Mickiewicza 21, Krakow, 31-120, Poland.
Background: Brassica oleracea L. is a key plant in the Brassicaceae family, known for popular vegetables like cabbage, broccoli, kale and collard. Collard (B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!