Asymmetric transfer hydrogenation (ATH) of ketones by formate in neat water is shown to be viable with Rh-TsDPEN and Ir-TsDPEN catalysts, derived in situ from [Cp*MCl2]2 (M=Rh, Ir) and TsDPEN. A variety of ketones were reduced, including nonfunctionalized aryl ketones, heteroaryl ketones, ketoesters, and unsaturated ketones. In comparison with Ir-TsDPEN and the related Ru II catalyst, the Rh III catalyst is most efficient in water, affording enantioselectivities of up to 99 % ee at substrate/catalyst (S/C) ratios of 100-1000 even without working under an inert atmosphere. The aqueous phase reduction is shown to be highly pH-dependent; the optimum pH windows for TOF greater than 50 mol mol(-1) h(-1) for Rh- and Ir-TsDPEN are 5.5-10.0 and 6.5-8.5, respectively. Outside the pH window, the reduction becomes slow or stagnant depending on the pH. However, the enantioselectivities erode only under acidic conditions. At a higher S/C ratio, the aqueous ATH by Rh-TsDPEN is shown to be product- as well as byproduct-inhibited; the product inhibition appears to stem at least partly from the reaction being reversible. The aqueous phase reduction is simple, efficient and environmentally benign, thus presenting a viable alternative for asymmetric reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200701258DOI Listing

Publication Analysis

Top Keywords

asymmetric transfer
8
transfer hydrogenation
8
aqueous phase
8
phase reduction
8
ketones
6
iii- iii-catalyzed
4
iii-catalyzed asymmetric
4
hydrogenation ketones
4
ketones water
4
water asymmetric
4

Similar Publications

Molecular Photoelectrocatalysis for Radical Reactions.

Acc Chem Res

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.

ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.

View Article and Find Full Text PDF

Exploring the Impact of Structural Modifications of Phenothiazine-Based Novel Compounds for Organic Solar Cells: DFT Investigations.

Polymers (Basel)

January 2025

Research Laboratory of Asymmetric Synthesis and Molecular Engineering of Materials for Organic Electronic (LR18ES19), Department of Physics, Faculty of Sciences of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia.

This paper explores a novel group of D-π-A configurations that has been specifically created for organic solar cell applications. In these material compounds, the phenothiazine, the furan, and two derivatives of the thienyl-fused IC group act as the donor, the π-conjugated spacer, and the end-group acceptors, respectively. We assess the impact of substituents by introducing bromine atoms at two potential substitution sites on each end-group acceptor (EG1 and EG2).

View Article and Find Full Text PDF

Background: The sacroiliac joints (SIJ) are specialized articulations in the pelvis that allow load transfer between the upper and lower body. Traumatic pelvic disruption often requires surgical fixation of at least one of these joints. Subsequent SIJ pain is associated with asymmetries in joint laxity or stiffness.

View Article and Find Full Text PDF

Designer topological-single-atom catalysts with site-specific selectivity.

Nat Commun

January 2025

School of Materials Science and Engineering, Peking University, Beijing, P.R. China.

Designing catalysts with well-defined, identical sites that achieve site-specific selectivity, and activity remains a significant challenge. In this work, we introduce a design principle of topological-single-atom catalysts (T-SACs) guided by density functional theory (DFT) and Ab initio molecular dynamics (AIMD) calculations, where metal single atoms are arranged in asymmetric configurations that electronic shield topologically misorients d orbitals, minimizing unwanted interactions between reactants and the support surface. Mn/CeO catalysts, synthesized via a charge-transfer-driven approach, demonstrate superior catalytic activity and selectivity for NO removal.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!