Brain nicotinic receptors display pronounced permeability for Ca2+ and localize to presynaptic nerve terminals, in addition to postsynaptic sites. Chronic exposure to nicotine has been shown to alter brain nicotinic receptor expression, but the functional consequences for presynaptic Ca2+ have not been directly examined. Here, we used confocal imaging to assess Ca2+ responses in individual nerve terminals from cortices of mice treated up to 14 days with nicotine as compared to vehicle-treated controls. Chronic nicotine treatment led to substantially enhanced amplitudes of presynaptic Ca2+ responses to acute application of nicotine at concentrations of 50 nM (2-fold) and 500 nM (1.7-fold), but not 50 microM. In addition, increased expression of high-affinity nicotinic receptors on isolated terminals was observed following chronic treatment, as determined immunocytochemically and pharmacologically. These findings suggest that chronic exposure to nicotine may lead to enhanced sensitivity to nicotine at select presynaptic sites in brain via up-regulation of high-affinity nicotinic receptors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662773PMC
http://dx.doi.org/10.1007/s11064-007-9557-9DOI Listing

Publication Analysis

Top Keywords

presynaptic ca2+
12
ca2+ responses
12
nerve terminals
12
nicotinic receptors
12
chronic nicotine
8
brain nicotinic
8
chronic exposure
8
exposure nicotine
8
high-affinity nicotinic
8
nicotine
6

Similar Publications

Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca channels.

View Article and Find Full Text PDF

Glutamate and GABA co-transmitting neurons exist in several brain regions; however, the mechanism by which these two neurotransmitters are co-released from the same synaptic terminals remains unclear. Here, we show that the supramammillary nucleus (SuM) to dentate granule cell synapses, which co-release glutamate and GABA, exhibit differences between glutamate and GABA release properties in paired-pulse ratio, Ca-sensitivity, presynaptic receptor modulation, and Ca channel-vesicle coupling configuration. Moreover, uniquantal synaptic responses show independent glutamatergic and GABAergic responses.

View Article and Find Full Text PDF

Coupling of mitochondrial state with active zone plasticity in early brain aging.

Redox Biol

December 2024

Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätmedizin Berlin, 10117, Berlin, Germany. Electronic address:

Neurodegenerative diseases typically emerge after an extended prodromal period, underscoring the critical importance of initiating interventions during the early stages of brain aging to enhance later resilience. Changes in presynaptic active zone proteins ("PreScale") are considered a dynamic, resilience-enhancing form of plasticity in the process of early, still reversible aging of the Drosophila brain. Aging, however, triggers significant changes not only of synapses but also mitochondria.

View Article and Find Full Text PDF

Model of the HVC neural network as a song motor in zebra finch.

Front Comput Neurosci

November 2024

Department of Physics, University of California, San Diego, La Jolla, CA, United States.

The nucleus HVC within the avian song system produces crystalized instructions which lead to precise, learned vocalization in zebra finches (). This paper proposes a model of the HVC neural network based on the physiological properties of individual HVC neurons, their synaptic interactions calibrated by experimental measurements, as well as the synaptic signal into this region which triggers song production. This neural network model comprises of two major neural populations in this area: neurons projecting to the nucleus RA and interneurons.

View Article and Find Full Text PDF

Differential participation of CaMKII/ROCK and NOS pathways in the cholinergic inhibitory drive operated by nicotinic α7 receptors in perisynaptic Schwann cells.

Biochem Pharmacol

January 2025

Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal; Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP/RISE-Health), Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal. Electronic address:

Nicotinic α7 receptors (α7 nAChRs) present in perisynaptic Schwann cells (PSCs) control acetylcholine (ACh) spillover from the neuromuscular synapse by transiently increasing intracellular Ca, which fosters adenosine release via type 1 equilibrative nucleoside transporters (ENT1) and retrograde activation of presynaptic A inhibitory receptors. The putative Ca-dependent pathways downstream α7 nAChRs involved in the sensing inhibitory drive operated by PSCs is unknown. Herein, we used phrenic nerve-hemidiaphragm preparations from Wistar rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!