Background: Mycolic acids are a complex mixture of branched, long-chain fatty acids, representing key components of the highly hydrophobic mycobacterial cell wall. Pathogenic mycobacteria carry mycolic acid sub-types that contain cyclopropane rings. Double bonds at specific sites on mycolic acid precursors are modified by the action of cyclopropane mycolic acid synthases (CMASs). The latter belong to a family of S-adenosyl-methionine-dependent methyl transferases, of which several have been well studied in Mycobacterium tuberculosis, namely, MmaA1 through A4, PcaA and CmaA2. Cyclopropanated mycolic acids are key factors participating in cell envelope permeability, host immunomodulation and persistence of M. tuberculosis. While several antitubercular agents inhibit mycolic acid synthesis, to date, the CMASs have not been shown to be drug targets.

Methodology/principle Findings: We have employed various complementary approaches to show that the antitubercular drug, thiacetazone (TAC), and its chemical analogues, inhibit mycolic acid cyclopropanation. Dramatic changes in the content and ratio of mycolic acids in the vaccine strain Mycobacterium bovis BCG, as well as in the related pathogenic species Mycobacterium marinum were observed after treatment with the drugs. Combination of thin layer chromatography, mass spectrometry and Nuclear Magnetic Resonance (NMR) analyses of mycolic acids purified from drug-treated mycobacteria showed a significant loss of cyclopropanation in both the alpha- and oxygenated mycolate sub-types. Additionally, High-Resolution Magic Angle Spinning (HR-MAS) NMR analyses on whole cells was used to detect cell wall-associated mycolates and to quantify the cyclopropanation status of the cell envelope. Further, overexpression of cmaA2, mmaA2 or pcaA in mycobacteria partially reversed the effects of TAC and its analogue on mycolic acid cyclopropanation, suggesting that the drugs act directly on CMASs.

Conclusions/significance: This is a first report on the mechanism of action of TAC, demonstrating the CMASs as its cellular targets in mycobacteria. The implications of this study may be important for the design of alternative strategies for tuberculosis treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2147073PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001343PLOS

Publication Analysis

Top Keywords

mycolic acid
24
mycolic acids
20
mycolic
11
antitubercular drug
8
cell wall
8
cell envelope
8
inhibit mycolic
8
acid cyclopropanation
8
nmr analyses
8
acids
6

Similar Publications

Manipulation and Structural Activity of AcpM in .

Biochemistry

December 2024

Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States.

(Mtb) is a leading cause of death, with an escalating global occurrence of drug-resistant infections that are partially attributed to cell wall mycolic acids derived from type II fatty acid biosynthesis (FAS-II). Here, the central acyl carrier protein, AcpM, contributes to the regulation of complex and specific protein-protein interactions (PPIs), though the orchestration of these events remain largely unresolved due to unique features of AcpM. Limitations include complexities in generating modified AcpM in a single state.

View Article and Find Full Text PDF

Structure-based development of N-Arylindole derivatives as Pks13 inhibitors against Mycobacterium tuberculosis.

Eur J Med Chem

February 2025

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China. Electronic address:

Targeting the biosynthetic pathway of mycolic acid is highly attractive to researchers in the field of novel anti-tubercular drug development. Pks13-TE is an essential catalytic component in the last assembling step of mycolic acid, and the co-crystal structures of the Pks13-TE-inhibitor complex provide insight into ligand recognition. Based on a structure-guided strategy, N-aryl indole derivatives were designed, synthesized, and evaluated for their antitubercular activities.

View Article and Find Full Text PDF

FadD32, a fatty acyl-AMP ligase, plays an indispensable role in mycobacterial mycolic acid synthesis and is a validated target for tuberculosis (TB) drug development. The crystal structure of (Mtb)FadD32 has laid the foundation of structure-based drug discovery against this crucial enzyme. Here, we screened the "isoxazole" scaffold containing molecules against MtbFadD32 and identified a compound 2,4-dibromo-6-[3-(trifluoromethyl)-1,2-oxazol-5-yl]phenol (M1) with specific inhibitory activity against Mtb.

View Article and Find Full Text PDF

Domain architecture of the MabR (), a member of the PucR transcription factor family.

Heliyon

November 2024

Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Department of Research in Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Belgium.

MabR (), a PucR-type transcription factor, plays a crucial role in regulating mycolic acid biosynthesis in . To understand its regulatory mechanisms, we determined the crystal structures of its N-terminal and C-terminal domains. The N-terminal domain adopts a globin-like fold, while the C-terminal domain comprises an α/β GGDEF domain and an all-α effector domain with a helix-turn-helix DNA-binding motif.

View Article and Find Full Text PDF

( ) is the causative agent of tuberculosis (TB), the leading cause of infectious-disease related deaths worldwide. TB infections present as a spectrum from active to latent disease. In the human host, faces hostile environments, such as nutrient deprivation, hypoxia, and low pH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!