We have developed a method for monitoring autophagy using Rosella, a biosensor comprised of a fast-maturing pH-stable red fluorescent protein fused to a pH-sensitive green fluorescent protein variant. Its mode of action relies upon differences in pH between different cellular compartments and the vacuole. Here we demonstrate its utility in yeast (Saccharomyces cerevisiae) by expression in the cytosol, and targeting to mitochondria or to the nucleus. When cells were cultured in nitrogen depleted medium, uptake of the compartment labelled with the biosensor (i.e., cytosol, mitochondria, or nucleus) into the vacuole was observed. We showed that this vacuolar uptake was, for cytosol and mitochondria, an ATG8-dependent process while the uptake of the nucleus was significantly reduced in the absence of Atg8p and can be said to be partially ATG8-dependent. We further demonstrated the value of the biosensor as a reporter of autophagy by employing fluorescence-activated cell sorting of discrete populations of cells undergoing autophagy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4161/auto.5331 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
High-throughput measurement of cellular traction forces at the nanoscale remains a significant challenge in mechanobiology, limiting our understanding of how cells interact with their microenvironment. Here, we present a novel technique for fabricating protein nanopatterns in standard multiwell microplate formats (96/384-wells), enabling the high-throughput quantification of cellular forces using DNA tension gauge tethers (TGTs) amplified by CRISPR-Cas12a. Our method employs sparse colloidal lithography to create nanopatterned surfaces with feature sizes ranging from sub 100 to 800 nm on transparent, planar, and fully PEGylated substrates.
View Article and Find Full Text PDFNanotoxicology
January 2025
Infection, Inflammation and Repair, Faculty of Medicine, University of Southampton, Southampton, UK.
The role of surfactant proteins A and D (SP-A and SP-D) in lung clearance and translocation to secondary organs of inhaled nanoparticles was investigated by exposing SP-A and SP-D knockout (AKO and DKO) and wild type (WT) mice nose-only for 3 hours to an aerosol of 20 nm gold nanoparticles (AuNPs). Animals were euthanised at 0-, 1-, 7- and 28-days post-exposure. Analysis by inductively coupled plasma mass spectrometry (ICP-MS) of the liver and kidneys showed that extrapulmonary translocation was below the limits of detection.
View Article and Find Full Text PDFPhysiol Plant
January 2025
College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.
Cold stress (CS) is a significant natural hazard, and distinguishing between plant cold resistance and sensitivity is critical for cultivar breeding and the development of germplasm resources. This study used 205 tobacco (Nicotiana tabacum L.) varieties from around the world to investigate the changes in the chlorophyll a fluorescence (OJIP) transients, JIP-test parameters, and seedling growth caused by seven days of CS (5°C) treatment.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary.
Cyanobacteria are important model organisms for studying the process of photosynthesis and the effects of environmental stress factors. This study aimed to identify the inhibitory sites of NaCl in the whole photosynthetic electron transport in Synechocystis sp. PCC 6803 WT cells by using multiple biophysical tools.
View Article and Find Full Text PDFbioRxiv
January 2025
Chemical and Biological Engineering - Iowa State University, 618 Bissell Rd, Ames, IA 50011.
Proteins can be rapidly prototyped with cell-free expression (CFE) but in most cases there is a lack of probes or assays to measure their function directly in the cell lysate, thereby limiting the throughput of these screens. Increased throughput is needed to build standardized, sequence to function data sets to feed machine learning guided protein optimization. Herein, we describe the use of fluorescent single-walled carbon nanotubes (SWCNT) as effective probes for measuring protease activity directly in cell-free lysate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!