Modulation of reactive oxygen species in pancreatic cancer.

Clin Cancer Res

Department of Surgery and Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA 52242, USA.

Published: December 2007

Purpose: The aim of the present study was to compare the effects of the three different forms of the antioxidant enzyme superoxide dismutase [i.e., manganese superoxide dismutase (MnSOD), copper zinc superoxide dismutase (CuZnSOD), and extracellular superoxide dismutase (EcSOD)] on the malignant phenotype of human pancreatic cancer.

Experimental Design: Human pancreatic cancer cell lines were infected with adenoviral vectors containing the cDNAs for three different forms of the antioxidant enzyme SOD. Intratumoral injections of the adenoviral vectors were used in nude mice with human tumor xenografts.

Results: Increases in immunoreactive protein and enzymatic activity were seen after infections with the AdMnSOD, AdCuZnSOD, or AdEcSOD constructs. Increased SOD activity decreased superoxide levels and increased hydrogen peroxide levels. Increasing SOD levels correlated with increased doubling time. Cell growth and plating efficiency decreased with increasing amounts of the adenoviral constructs, with the AdCuZnSOD vector having the greatest effect in decreasing in vitro tumor growth. In contrast, inhibiting endogenous SOD with small interfering RNA increased superoxide levels and promoted tumor growth. Of the three SODs, tumors grew the slowest and survival was increased the greatest in nude mice injected with the AdEcSOD construct.

Conclusions: Scavenging plasma membrane-generated superoxide may prove beneficial for suppression of pancreatic cancer growth.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-07-0851DOI Listing

Publication Analysis

Top Keywords

superoxide dismutase
16
pancreatic cancer
12
three forms
8
forms antioxidant
8
antioxidant enzyme
8
human pancreatic
8
adenoviral vectors
8
nude mice
8
superoxide levels
8
tumor growth
8

Similar Publications

Background: Morphine, a mu-opioid receptor (MOR) agonist commonly utilized in clinical settings alongside chemotherapy to manage chronic pain in cancer patients, has exhibited contradictory effects on cancer, displaying specificity toward certain cancer types and doses.

Objective: The aim of this study was to conduct a systematic assessment and comparison of the impacts of morphine on three distinct cancer models in a preclinical setting.

Methods: Viability and apoptosis assays were conducted on a panel of cancer cell lines following treatment with morphine, chemotherapy drugs alone, or their combination.

View Article and Find Full Text PDF

Oral Biomimetic Nanotherapeutics for Ulcerative Colitis Targeted Treatment by Repairing Intestinal Epithelial Barrier and Restoring Redox Homeostasis.

ACS Appl Mater Interfaces

January 2025

Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China.

The structural disruption of intestinal barrier and excessive reactive oxygen/nitrogen species (RONS) generation are two intertwined factors that drive the occurrence and development of ulcerative colitis (UC). Synchronously restoring the intestinal barrier and mitigating excess RONS is a promising strategy for UC management, but its treatment outcomes are still hindered by low drug accumulation and retention in colonic lesions. Inspired by intestine colonizing bacterium, we developed a mucoadhesive probiotic -mimic entinostat-loaded hollow mesopores prussian blue (HMPB) nanotherapeutic (AM@HMPB@E) for UC-targeted therapy via repairing intestinal barrier and scavenging RONS.

View Article and Find Full Text PDF

Background: Mizagliflozin (MIZ) is a specific inhibitor of sodium-glucose cotransport protein 1 (SGLT1) originally developed as a medication for diabetes.

Aim: To explore the impact of MIZ on diabetic nephropathy (DN).

Methods: Diabetic mice were created using db/db mice.

View Article and Find Full Text PDF

The chemotherapeutic drug doxorubicin (DOX) has been widely used for treating solid tumors attributed to its antiproliferative effectiveness; however, its clinical use is limited due to side effects, including cardiotoxicity, myelosuppression, and drug resistance. Combining DOX with buthionine sulfoximine (BSO), a glutathione (GSH) synthesis inhibitor, showed promising results in overcoming these adverse effects, potentially reducing the required DOX dose while maintaining efficacy. The aim of the present study was to examine the effects of different concentrations of BSO and DOX, both individually and in combination, utilizing B16/F10 (murine melanoma), SNB-19 (human glioblastoma), S180 (murine sarcoma), and SVEC4-10 (murine endothelial) cell lines.

View Article and Find Full Text PDF

Aquaporins are widely present in the plant kingdom and play important roles in plant response to abiotic adversity stresses such as water and temperature extremes. In this study, we investigated the regulatory role of NTPIP2;4 on drought tolerance in tobacco at physiological and transcriptional levels. In this experiment, we constructed an NtPIP2;4 overexpression vector and genetically transformed tobacco variety 'K326' to investigate the mechanism of NtPIP2;4 gene in regulating drought tolerance in tobacco at physiological and transcriptomic levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!