Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Low back disorders and their prevention is of great importance for companies and their employees. Whole-body vibration is thought to be a risk factor for low back disorders, but the neuromuscular, biomechanical, and/or physiological mechanisms responsible for this increased risk are unclear. The purpose of this study was to measure the acute effect of seated whole-body vibration on the postural control of the trunk during unstable seated balance.
Methods: Twenty-one healthy subjects (age: 23 years (SD 4 years)) were tested on a wobble chair designed to measure trunk postural control. Measurements of kinematic variance and non-linear stability control were based on seat angle before and after 30 min of seated whole-body vibration (bandwidth=2-20 Hz, root-mean-squared amplitude=1.15m/s(2)).
Findings: All measures of kinematic variance of unstable seated balance increased (P<0.05) after vibration including: ellipse area (35.5%), root-mean-squared radial lean angle (17.9%), and path length (12.2%). Measures of non-linear stability control also increased (P<0.05) including Lyapunov exponent (8.78%), stability diffusion analysis (1.95%), and Hurst rescaled range analysis (5.2%).
Interpretation: Whole-body vibration impaired postural control of the trunk as evidenced by the increase in kinematic variance and non-linear stability control measures during unstable sitting. These findings imply an impairment in spinal stability and a mechanism by which vibration may increase low back injury risk. Future work should investigate the effects of whole-body vibration on the anatomical and neuromuscular components that contribute to spinal stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinbiomech.2007.11.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!