Shared genomic segment analysis. Mapping disease predisposition genes in extended pedigrees using SNP genotype assays.

Ann Hum Genet

Department of Biomedical Informatics, University of Utah, 391 Chipeta Way, Salt Lake City, UT 84108, USA.

Published: March 2008

We examine the utility of high density genotype assays for predisposition gene localization using extended pedigrees. Results for the distribution of the number and length of genomic segments shared identical by descent among relatives previously derived in the context of genomic mismatch scanning are reviewed in the context of dense single nucleotide polymorphism maps. We use long runs of loci at which cases share a common allele identically by state to localize hypothesized predisposition genes. The distribution of such runs under the hypothesis of no genetic effect is evaluated by simulation. Methods are illustrated by analysis of an extended prostate cancer pedigree previously reported to show significant linkage to chromosome 1p23. Our analysis establishes that runs of simple single locus statistics can be powerful, tractable and robust for finding DNA shared between relatives, and that extended pedigrees offer powerful designs for gene detection based on these statistics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964273PMC
http://dx.doi.org/10.1111/j.1469-1809.2007.00406.xDOI Listing

Publication Analysis

Top Keywords

extended pedigrees
12
predisposition genes
8
genotype assays
8
shared genomic
4
genomic segment
4
segment analysis
4
analysis mapping
4
mapping disease
4
disease predisposition
4
extended
4

Similar Publications

Introduction: The MAPT gene encodes Tau, a protein mainly expressed by neurons. Tau protein plays an important role in cerebral microtubule polymerization and stabilization, in axonal transport and synaptic plasticity. Heterozygous pathogenic variation in MAPT are involved in a spectrum of autosomal dominant neurodegenerative diseases known as taupathies, including Alzheimer's disease, Pick's disease, fronto-temporal dementia, cortico-basal degeneration and progressive supranuclear palsy.

View Article and Find Full Text PDF

A technique known as investigative genetic genealogy (IGG) was first introduced to criminal investigations in 2018, and it has since been used by U.S. law enforcement to help identify hundreds of criminal perpetrators and unidentified human remains.

View Article and Find Full Text PDF

Improvement of the accuracy of breeding value prediction for egg production traits in Muscovy duck using low-coverage whole-genome sequence data.

Poult Sci

January 2025

Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China. Electronic address:

Low-coverage whole genome sequencing (lcWGS) is an effective low-cost genotyping technology when combined with genotype imputation approaches. It facilitates cost-effective genomic selection (GS) programs in agricultural animal populations. GS based on lcWGS data has been successfully applied to livestock such as pigs and donkeys.

View Article and Find Full Text PDF

Inheritance of Imaging Parameters of Arrhythmic Risk in Mitral Valve Prolapse: A Pedigree Study.

Circ Cardiovasc Imaging

January 2025

Division of Cardiology, Department of Medicine, University of California, San Francisco (L.C., S.D., D.B., J.J.T., Q.F., L.T., A.H.R., R.J., S.H., H.H.H., Z.H.T., N.B.S., F.N.D.).

Background: A subset of patients with mitral valve prolapse (MVP), a highly heritable condition, experience sudden cardiac arrest (SCA) or sudden cardiac death (SCD). However, the inheritance of phenotypic imaging features of arrhythmic MVP remains unknown.

Methods: We recruited 23 MVP probands, including 9 with SCA/SCD and 14 with frequent/complex ventricular ectopy.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) plays a crucial role in numerous cellular processes, yet its impact on human behavior remains underexplored. The current paper proposes a novel covariance structure model with seven parameters to specifically isolate and quantify mtDNA effects on human behavior. This approach uses extended pedigrees to obtain estimates of mtDNA variance while controlling for other genetic and environmental influences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!